348 research outputs found

    Almost periodic solutions of retarded SICNNs with functional response on piecewise constant argument

    Get PDF
    We consider a new model for shunting inhibitory cellular neural networks, retarded functional differential equations with piecewise constant argument. The existence and exponential stability of almost periodic solutions are investigated. An illustrative example is provided.Comment: 24 pages, 1 figur

    Positive almost periodicity on SICNNs incorporating mixed delays and D operator

    Get PDF
    This article involves a kind of shunting inhibitory cellular neural networks incorporating D operator and mixed delays. First of all, we demonstrate that, under appropriate external input conditions, some positive solutions of the addressed system exist globally. Secondly, with the help of the differential inequality techniques and exploiting Lyapunov functional approach, some criteria are established to evidence the globally exponential stability on the positive almost periodic solutions. Eventually, a numerical case is provided to test and verify the correctness and reliability of the proposed findings

    Convergence of Discrete-Time Cellular Neural Networks with Application to Image Processing

    Get PDF
    The paper considers a class of discrete-time cellular neural networks (DT-CNNs) obtained by applying Euler's discretization scheme to standard CNNs. Let T be the DT-CNN interconnection matrix which is defined by the feedback cloning template. The paper shows that a DT-CNN is convergent, i.e. each solution tends to an equilibrium point, when T is symmetric and, in the case where T + En is not positive-semidefinite, the step size of Euler's discretization scheme does not exceed a given bound (En is the n Ă— n unit matrix). It is shown that two relevant properties hold as a consequence of the local and space-invariant interconnecting structure of a DT-CNN, namely: (1) the bound on the step size can be easily estimated via the elements of the DT-CNN feedback cloning template only; (2) the bound is independent of the DT-CNN dimension. These two properties make DT-CNNs very effective in view of computer simulations and for the practical applications to high-dimensional processing tasks. The obtained results are proved via Lyapunov approach and LaSalle's Invariance Principle in combination with some fundamental inequalities enjoyed by the projection operator on a convex set. The results are compared with previous ones in the literature on the convergence of DT-CNNs and also with those obtained for different neural network models as the Brain-State-in-a-Box model. Finally, the results on convergence are illustrated via the application to some relevant 2D and 1D DT-CNNs for image processing tasks

    Convolutional MKL based multimodal emotion recognition and sentiment analysis

    Get PDF
    Technology has enabled anyone with an Internet connection to easily create and share their ideas, opinions and content with millions of other people around the world. Much of the content being posted and consumed online is multimodal. With billions of phones, tablets and PCs shipping today with built-in cameras and a host of new video-equipped wearables like Google Glass on the horizon, the amount of video on the Internet will only continue to increase. It has become increasingly difficult for researchers to keep up with this deluge of multimodal content, let alone organize or make sense of it. Mining useful knowledge from video is a critical need that will grow exponentially, in pace with the global growth of content. This is particularly important in sentiment analysis, as both service and product reviews are gradually shifting from unimodal to multimodal. We present a novel method to extract features from visual and textual modalities using deep convolutional neural networks. By feeding such features to a multiple kernel learning classifier, we significantly outperform the state of the art of multimodal emotion recognition and sentiment analysis on different datasets

    Sensor encoding using lateral inhibited, self-organized cellular neural networks

    Get PDF
    The paper focuses on the division of the sensor field into subsets of sensor events and proposes the linear transformation with the smallest achievable error for reproduction: the transform coding approach using the principal component analysis (PCA). For the implementation of the PCA, this paper introduces a new symmetrical, lateral inhibited neural network model, proposes an objective function for it and deduces the corresponding learning rules. The necessary conditions for the learning rate and the inhibition parameter for balancing the crosscorrelations vs. the autocorrelations are computed. The simulation reveals that an increasing inhibition can speed up the convergence process in the beginning slightly. In the remaining paper, the application of the network in picture encoding is discussed. Here, the use of non-completely connected networks for the self-organized formation of templates in cellular neural networks is shown. It turns out that the self-organizing Kohonen map is just the non-linear, first order approximation of a general self-organizing scheme. Hereby, the classical transform picture coding is changed to a parallel, local model of linear transformation by locally changing sets of self-organized eigenvector projections with overlapping input receptive fields. This approach favors an effective, cheap implementation of sensor encoding directly on the sensor chip. Keywords: Transform coding, Principal component analysis, Lateral inhibited network, Cellular neural network, Kohonen map, Self-organized eigenvector jets

    Mean almost periodicity and moment exponential stability of discrete-time stochastic shunting inhibitory cellular neural networks with time delays

    Get PDF
    summary:By using the semi-discrete method of differential equations, a new version of discrete analogue of stochastic shunting inhibitory cellular neural networks (SICNNs) is formulated, which gives a more accurate characterization for continuous-time stochastic SICNNs than that by Euler scheme. Firstly, the existence of the 2th mean almost periodic sequence solution of the discrete-time stochastic SICNNs is investigated with the help of Minkowski inequality, Hölder inequality and Krasnoselskii's fixed point theorem. Secondly, the moment global exponential stability of the discrete-time stochastic SICNNs is also studied by using some analytical skills and the proof of contradiction. Finally, two examples are given to demonstrate that our results are feasible. By numerical simulations, we discuss the effect of stochastic perturbation on the almost periodicity and global exponential stability of the discrete-time stochastic SICNNs

    On the Weighted Pseudo Almost Periodic Solutions of Nicholson’s Blowflies Equation

    Get PDF
    This study is concerned with the existence, uniqueness and global exponential stability of weighted pseudo almost periodic solutions of a generalized Nicholson’s blowflies equation with mixed delays. Using some differential inequalities and a fixed point theorem, sufficient conditions were obtained for the existence, uniqueness of at the least a weighted pseudo almost periodic solutions and global exponential stability of this solution. The results of this study are new and complementary to the previous ones can be found in the literature. At the end of the study an example is given to show the accuracy of our results
    • …
    corecore