208 research outputs found

    Second-Order Consensus of Networked Mechanical Systems With Communication Delays

    Full text link
    In this paper, we consider the second-order consensus problem for networked mechanical systems subjected to nonuniform communication delays, and the mechanical systems are assumed to interact on a general directed topology. We propose an adaptive controller plus a distributed velocity observer to realize the objective of second-order consensus. It is shown that both the positions and velocities of the mechanical agents synchronize, and furthermore, the velocities of the mechanical agents converge to the scaled weighted average value of their initial ones. We further demonstrate that the proposed second-order consensus scheme can be used to solve the leader-follower synchronization problem with a constant-velocity leader and under constant communication delays. Simulation results are provided to illustrate the performance of the proposed adaptive controllers.Comment: 16 pages, 5 figures, submitted to IEEE Transactions on Automatic Contro

    Distributed Robust Consensus Control of Multi-agent Systems with Heterogeneous Matching Uncertainties

    Full text link
    This paper considers the distributed consensus problem of linear multi-agent systems subject to different matching uncertainties for both the cases without and with a leader of bounded unknown control input. Due to the existence of nonidentical uncertainties, the multi-agent systems discussed in this paper are essentially heterogeneous. For the case where the communication graph is undirected and connected, a distributed continuous static consensus protocol based on the relative state information is first designed, under which the consensus error is uniformly ultimately bounded and exponentially converges to a small adjustable residual set. A fully distributed adaptive consensus protocol is then designed, which, contrary to the static protocol, relies on neither the eigenvalues of the Laplacian matrix nor the upper bounds of the uncertainties. For the case where there exists a leader whose control input is unknown and bounded, distributed static and adaptive consensus protocols are proposed to ensure the boundedness of the consensus error. It is also shown that the proposed protocols can be redesigned so as to ensure the boundedness of the consensus error in the presence of bounded external disturbances which do not satisfy the matching condition. A sufficient condition for the existence of the proposed protocols is that each agent is stabilizable.Comment: 16 page, 10 figures. This manuscript is an extended version of our paper accepted for publication by Automatic

    Bounded synchronization of a heterogeneous complex switched network

    Get PDF
    This paper investigates synchronization issues of a heterogeneous complex network with a general switching topology in the sense of boundedness, when no complete synchronization manifold exists. Several sufficient conditions are established with the Lyapunov method and the differential analysis of convergence to determine the existence and estimate the convergence domain for the local and global bounded synchronization of a heterogeneous complex network. By using the consensus convergence of a switched linear system associated with the switching topology, explicit bounds of the maximum deviation between nodes are obtained in the form of a scalar inequality involving the property of the consensus convergence, the homogeneous and heterogeneous dynamics of individual nodes for the local and global cases. These analytical results are simple yet generic, which can be used to explore synchronization issues of various complex networks. Finally, a numerical simulation illustrates their effectiveness.postprin

    Cluster consensus in discrete-time networks of multi-agents with inter-cluster nonidentical inputs

    Full text link
    In this paper, cluster consensus of multi-agent systems is studied via inter-cluster nonidentical inputs. Here, we consider general graph topologies, which might be time-varying. The cluster consensus is defined by two aspects: the intra-cluster synchronization, that the state differences between each pair of agents in the same cluster converge to zero, and inter-cluster separation, that the states of the agents in different clusters are separated. For intra-cluster synchronization, the concepts and theories of consensus including the spanning trees, scramblingness, infinite stochastic matrix product and Hajnal inequality, are extended. With them, it is proved that if the graph has cluster spanning trees and all vertices self-linked, then static linear system can realize intra-cluster synchronization. For the time-varying coupling cases, it is proved that if there exists T>0 such that the union graph across any T-length time interval has cluster spanning trees and all graphs has all vertices self-linked, then the time-varying linear system can also realize intra-cluster synchronization. Under the assumption of common inter-cluster influence, a sort of inter-cluster nonidentical inputs are utilized to realize inter-cluster separation, that each agent in the same cluster receives the same inputs and agents in different clusters have different inputs. In addition, the boundedness of the infinite sum of the inputs can guarantee the boundedness of the trajectory. As an application, we employ a modified non-Bayesian social learning model to illustrate the effectiveness of our results.Comment: 13 pages, 4 figure

    Output consensus of nonlinear multi-agent systems with unknown control directions

    Get PDF
    In this paper, we consider an output consensus problem for a general class of nonlinear multi-agent systems without a prior knowledge of the agents' control directions. Two distributed Nussbaumtype control laws are proposed to solve the leaderless and leader-following adaptive consensus for heterogeneous multiple agents. Examples and simulations are given to verify their effectivenessComment: 10 pages;2 figure

    Control of Networked Multiagent Systems with Uncertain Graph Topologies

    Full text link
    Multiagent systems consist of agents that locally exchange information through a physical network subject to a graph topology. Current control methods for networked multiagent systems assume the knowledge of graph topologies in order to design distributed control laws for achieving desired global system behaviors. However, this assumption may not be valid for situations where graph topologies are subject to uncertainties either due to changes in the physical network or the presence of modeling errors especially for multiagent systems involving a large number of interacting agents. Motivating from this standpoint, this paper studies distributed control of networked multiagent systems with uncertain graph topologies. The proposed framework involves a controller architecture that has an ability to adapt its feed- back gains in response to system variations. Specifically, we analytically show that the proposed controller drives the trajectories of a networked multiagent system subject to a graph topology with time-varying uncertainties to a close neighborhood of the trajectories of a given reference model having a desired graph topology. As a special case, we also show that a networked multi-agent system subject to a graph topology with constant uncertainties asymptotically converges to the trajectories of a given reference model. Although the main result of this paper is presented in the context of average consensus problem, the proposed framework can be used for many other problems related to networked multiagent systems with uncertain graph topologies.Comment: 14 pages, 2 figure
    corecore