1,139 research outputs found

    Global exponential convergence of delayed inertial Cohen–Grossberg neural networks

    Get PDF
    In this paper, the exponential convergence of delayed inertial Cohen–Grossberg neural networks (CGNNs) is studied. Two methods are adopted to discuss the inertial CGNNs, one is expressed as two first-order differential equations by selecting a variable substitution, and the other does not change the order of the system based on the nonreduced-order method. By establishing appropriate Lyapunov function and using inequality techniques, sufficient conditions are obtained to ensure that the discussed model converges exponentially to a ball with the prespecified convergence rate. Finally, two simulation examples are proposed to illustrate the validity of the theorem results

    New criteria on global Mittag-Leffler synchronization for Caputo-type delayed Cohen-Grossberg Inertial Neural Networks

    Get PDF
    Our focus of this paper is on global Mittag-Leffler synchronization (GMLS) of the Caputo-type Inertial Cohen-Grossberg Neural Networks (ICGNNs) with discrete and distributed delays. This model takes into account the inertial term as well as the two types of delays, which greatly reduces the conservatism with respect to the model. A change of variables transforms the 2β 2\beta order inertial frame into β \beta order ordinary frame in order to deal with the effect of the inertial term. In the following steps, two novel types of delay controllers are designed for the purpose of reaching the GMLS. In conjunction with the novel controllers, utilizing differential mean-value theorem and inequality techniques, several criteria are derived to determine the GMLS of ICGNNs within the framework of Caputo-type derivative and calculus properties. At length, the feasibility of the results is further demonstrated by two simulation examples

    New results of global Mittag-Leffler synchronization on Caputo fuzzy delayed inertial neural networks

    Get PDF
    This article is devoted to discussing the problem of global Mittag-Leffler synchronization (GMLS) for the Caputo-type fractional-order fuzzy delayed inertial neural networks (FOFINNs). First of all, both inertial and fuzzy terms are taken into account in the system. For the sake of reducing the influence caused by the inertia term, the order reduction is achieved by the measure of variable substitution. The introduction of fuzzy terms can evade fuzziness or uncertainty as much as possible. Subsequently, a nonlinear delayed controller is designed to achieve GMLS. Utilizing the inequality techniques, Lyapunov’s direct method for functions and Razumikhin theorem, the criteria for interpreting the GMLS of FOFINNs are established. Particularly, two inferences are presented in two special cases. Additionally, the availability of the acquired results are further confirmed by simulations

    Finite-time synchronization of Markovian neural networks with proportional delays and discontinuous activations

    Get PDF
    In this paper, finite-time synchronization of neural networks (NNs) with discontinuous activation functions (DAFs), Markovian switching, and proportional delays is studied in the framework of Filippov solution. Since proportional delay is unbounded and different from infinite-time distributed delay and classical finite-time analytical techniques are not applicable anymore, new 1-norm analytical techniques are developed. Controllers with and without the sign function are designed to overcome the effects of the uncertainties induced by Filippov solutions and further synchronize the considered NNs in a finite time. By designing new Lyapunov functionals and using M-matrix method, sufficient conditions are derived to guarantee that the considered NNs realize synchronization in a settling time without introducing any free parameters. It is shown that, though the proportional delay can be unbounded, complete synchronization can still be realized, and the settling time can be explicitly estimated. Moreover, it is discovered that controllers with sign function can reduce the control gains, while controllers without the sign function can overcome chattering phenomenon. Finally, numerical simulations are given to show the effectiveness of theoretical results

    Comparative exploration on bifurcation behavior for integer-order and fractional-order delayed BAM neural networks

    Get PDF
    In the present study, we deal with the stability and the onset of Hopf bifurcation of two type delayed BAM neural networks (integer-order case and fractional-order case). By virtue of the characteristic equation of the integer-order delayed BAM neural networks and regarding time delay as critical parameter, a novel delay-independent condition ensuring the stability and the onset of Hopf bifurcation for the involved integer-order delayed BAM neural networks is built. Taking advantage of Laplace transform, stability theory and Hopf bifurcation knowledge of fractional-order differential equations, a novel delay-independent criterion to maintain the stability and the appearance of Hopf bifurcation for the addressed fractional-order BAM neural networks is established. The investigation indicates the important role of time delay in controlling the stability and Hopf bifurcation of the both type delayed BAM neural networks. By adjusting the value of time delay, we can effectively amplify the stability region and postpone the time of onset of Hopf bifurcation for the fractional-order BAM neural networks. Matlab simulation results are clearly presented to sustain the correctness of analytical results. The derived fruits of this study provide an important theoretical basis in regulating networks

    Design and Implementation of an Artificial Neural Network Controller for Quadrotor Flight in Confined Environment

    Get PDF
    Quadrotors offer practical solutions for many applications, such as emergency rescue, surveillance, military operations, videography and many more. For this reason, they have recently attracted the attention of research and industry. Even though they have been intensively studied, quadrotors still suffer from some challenges that limit their use, such as trajectory measurement, attitude estimation, obstacle avoidance, safety precautions, and land cybersecurity. One major problem is flying in a confined environment, such as closed buildings and tunnels, where the aerodynamics around the quadrotor are affected by close proximity objects, which result in tracking performance deterioration, and sometimes instability. To address this problem, researchers followed three different approaches; the Modeling approach, which focuses on the development of a precise dynamical model that accounts for the different aerodynamic effects, the Sensor Integration approach, which focuses on the addition of multiple sensors to the quadrotor and applying algorithms to stabilize the quadrotor based on their measurements, and the Controller Design approach, which focuses on the development of an adaptive and robust controller. In this research, a learning controller is proposed as a solution for the issue of quadrotor trajectory control in confined environments. This controller utilizes Artificial Neural Networks to adjust for the unknown aerodynamics on-line. A systematic approach for controller design is developed, so that, the approach could be followed for the development of controllers for other nonlinear systems of similar form. One goal for this research is to develop a global controller that could be applied to any quadrotor with minimal adjustment. A novel Artificial Neural Network structure is presented that increases learning efficiency and speed. In addition, a new learning algorithm is developed for the Artificial Neural Network, when utilized with the developed controller. Simulation results for the designed controller when applied to the Qball-X4 quadrotor are presented that show the effectiveness of the proposed Artificial Neural Network structure and the developed learning algorithm in the presence of variety of different unknown aerodynamics. These results are confirmed with real time experimentation, as the developed controller was successfully applied to Quanser’s Qball-X4 quadrotor for the flight control in confined environment. The practical challenges associated with the application of such a controller for quadrotor flight in confined environment are analyzed and adequately resolved to achieve an acceptable tracking performance

    Global exponential periodicity of nonlinear neural networks with multiple time-varying delays

    Get PDF
    Global exponential periodicity of nonlinear neural networks with multiple time-varying delays is investigated. Such neural networks cannot be written in the vector-matrix form because of the existence of the multiple delays. It is noted that although the neural network with multiple time-varying delays has been investigated by Lyapunov-Krasovskii functional method in the literature, the sufficient conditions in the linear matrix inequality form have not been obtained. Two sets of sufficient conditions in the linear matrix inequality form are established by Lyapunov-Krasovskii functional and linear matrix inequality to ensure that two arbitrary solutions of the neural network with multiple delays attract each other exponentially. This is a key prerequisite to prove the existence, uniqueness, and global exponential stability of periodic solutions. Some examples are provided to demonstrate the effectiveness of the established results. We compare the established theoretical results with the previous results and show that the previous results are not applicable to the systems in these examples

    Input Delay Estimation for Input-Affine Dynamical Systems Based on Taylor Expansion

    Get PDF
    In this brief, we propose a novel method based on the Taylor expansion for the estimation of input delay for a class of input-affine dynamical systems. The proposed method guarantees the asymptotic convergence of the estimation error to zero. An application to the input delay estimation of a continuous stirred tank reactor system shows the effectiveness of the proposed method
    • …
    corecore