5,813 research outputs found

    Complex partial synchronization patterns in networks of delay-coupled neurons

    Get PDF
    We study the spatio-temporal dynamics of a multiplex network of delay-coupled FitzHugh–Nagumo oscillators with non-local and fractal connectivities. Apart from chimera states, a new regime of coexistence of slow and fast oscillations is found. An analytical explanation for the emergence of such coexisting partial synchronization patterns is given. Furthermore, we propose a control scheme for the number of fast and slow neurons in each layer.DFG, 163436311, SFB 910: Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzept

    Dwelling Quietly in the Rich Club: Brain Network Determinants of Slow Cortical Fluctuations

    Full text link
    For more than a century, cerebral cartography has been driven by investigations of structural and morphological properties of the brain across spatial scales and the temporal/functional phenomena that emerge from these underlying features. The next era of brain mapping will be driven by studies that consider both of these components of brain organization simultaneously -- elucidating their interactions and dependencies. Using this guiding principle, we explored the origin of slowly fluctuating patterns of synchronization within the topological core of brain regions known as the rich club, implicated in the regulation of mood and introspection. We find that a constellation of densely interconnected regions that constitute the rich club (including the anterior insula, amygdala, and precuneus) play a central role in promoting a stable, dynamical core of spontaneous activity in the primate cortex. The slow time scales are well matched to the regulation of internal visceral states, corresponding to the somatic correlates of mood and anxiety. In contrast, the topology of the surrounding "feeder" cortical regions show unstable, rapidly fluctuating dynamics likely crucial for fast perceptual processes. We discuss these findings in relation to psychiatric disorders and the future of connectomics.Comment: 35 pages, 6 figure

    Dynamical mean-filed approximation to small-world networks of spiking neurons: From local to global, and/or from regular to random couplings

    Full text link
    By extending a dynamical mean-field approximation (DMA) previously proposed by the author [H. Hasegawa, Phys. Rev. E {\bf 67}, 41903 (2003)], we have developed a semianalytical theory which takes into account a wide range of couplings in a small-world network. Our network consists of noisy NN-unit FitzHugh-Nagumo (FN) neurons with couplings whose average coordination number ZZ may change from local (ZNZ \ll N ) to global couplings (Z=N1Z=N-1) and/or whose concentration of random couplings pp is allowed to vary from regular (p=0p=0) to completely random (p=1). We have taken into account three kinds of spatial correlations: the on-site correlation, the correlation for a coupled pair and that for a pair without direct couplings. The original 2N2 N-dimensional {\it stochastic} differential equations are transformed to 13-dimensional {\it deterministic} differential equations expressed in terms of means, variances and covariances of state variables. The synchronization ratio and the firing-time precision for an applied single spike have been discussed as functions of ZZ and pp. Our calculations have shown that with increasing pp, the synchronization is {\it worse} because of increased heterogeneous couplings, although the average network distance becomes shorter. Results calculated by out theory are in good agreement with those by direct simulations.Comment: 19 pages, 2 figures: accepted in Phys. Rev. E with minor change

    Neural synchrony in cortical networks : history, concept and current status

    Get PDF
    Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies

    Neural synchrony in cortical networks : history, concept and current status

    Get PDF
    Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies

    Conedy: a scientific tool to investigate Complex Network Dynamics

    Full text link
    We present Conedy, a performant scientific tool to numerically investigate dynamics on complex networks. Conedy allows to create networks and provides automatic code generation and compilation to ensure performant treatment of arbitrary node dynamics. Conedy can be interfaced via an internal script interpreter or via a Python module
    corecore