1,896 research outputs found

    Multimodal Biometrics Enhancement Recognition System based on Fusion of Fingerprint and PalmPrint: A Review

    Get PDF
    This article is an overview of a current multimodal biometrics research based on fingerprint and palm-print. It explains the pervious study for each modal separately and its fusion technique with another biometric modal. The basic biometric system consists of four stages: firstly, the sensor which is used for enrolmen

    Learning Representations for Face Recognition: A Review from Holistic to Deep Learning

    Get PDF
    For decades, researchers have investigated how to recognize facial images. This study reviews the development of different face recognition (FR) methods, namely, holistic learning, handcrafted local feature learning, shallow learning, and deep learning (DL). With the development of methods, the accuracy of recognizing faces in the labeled faces in the wild (LFW) database has been increased. The accuracy of holistic learning is 60%, that of handcrafted local feature learning increases to 70%, and that of shallow learning is 86%. Finally, DL achieves human-level performance (97% accuracy). This enhanced accuracy is caused by large datasets and graphics processing units (GPUs) with massively parallel processing capabilities. Furthermore, FR challenges and current research studies are discussed to understand future research directions. The results of this study show that presently the database of labeled faces in the wild has reached 99.85% accuracy

    Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Full text link
    Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, audio, and data. However, there exists major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to inappropriate design of network architecture, use of objective function and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present the promising research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table

    A multimodal deep learning framework using local feature representations for face recognition

    Get PDF
    YesThe most recent face recognition systems are mainly dependent on feature representations obtained using either local handcrafted-descriptors, such as local binary patterns (LBP), or use a deep learning approach, such as deep belief network (DBN). However, the former usually suffers from the wide variations in face images, while the latter usually discards the local facial features, which are proven to be important for face recognition. In this paper, a novel framework based on merging the advantages of the local handcrafted feature descriptors with the DBN is proposed to address the face recognition problem in unconstrained conditions. Firstly, a novel multimodal local feature extraction approach based on merging the advantages of the Curvelet transform with Fractal dimension is proposed and termed the Curvelet–Fractal approach. The main motivation of this approach is that theCurvelet transform, a newanisotropic and multidirectional transform, can efficiently represent themain structure of the face (e.g., edges and curves), while the Fractal dimension is one of the most powerful texture descriptors for face images. Secondly, a novel framework is proposed, termed the multimodal deep face recognition (MDFR)framework, to add feature representations by training aDBNon top of the local feature representations instead of the pixel intensity representations. We demonstrate that representations acquired by the proposed MDFR framework are complementary to those acquired by the Curvelet–Fractal approach. Finally, the performance of the proposed approaches has been evaluated by conducting a number of extensive experiments on four large-scale face datasets: the SDUMLA-HMT, FERET, CAS-PEAL-R1, and LFW databases. The results obtained from the proposed approaches outperform other state-of-the-art of approaches (e.g., LBP, DBN, WPCA) by achieving new state-of-the-art results on all the employed datasets

    ADNet : diagnóstico assistido por computador para doença de Alzheimer usando rede neural convolucional 3D com cérebro inteiro

    Get PDF
    Orientadores: Anderson de Rezende Rocha, Marina WeilerDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Demência por doença de Alzheimer (DA) é uma síndrome clínica caracterizada por múltiplos problemas cognitivos, incluindo dificuldades na memória, funções executivas, linguagem e habilidades visuoespaciais. Sendo a forma mais comum de demência, essa doença mata mais do que câncer de mama e de próstata combinados, além de ser a sexta principal causa de morte nos Estados Unidos. A neuroimagem é uma das áreas de pesquisa mais promissoras para a detecção de biomarcadores estruturais da DA, onde uma técnica não invasiva é usada para capturar uma imagem digital do cérebro, a partir da qual especialistas extraem padrões e características da doença. Nesse contexto, os sistemas de diagnóstico assistido por computador (DAC) são abordagens que visam ajudar médicos e especialistas na interpretação de dados médicos, para fornecer diagnósticos aos pacientes. Em particular, redes neurais convolucionais (RNCs) são um tipo especial de rede neural artificial (RNA), que foram inspiradas em como o sistema visual funciona e, nesse sentido, têm sido cada vez mais utilizadas em tarefas de visão computacional, alcançando resultados impressionantes. Em nossa pesquisa, um dos principais objetivos foi utilizar o que há de mais avançado sobre aprendizagem profunda (por exemplo, RNC) para resolver o difícil problema de identificar biomarcadores estruturais da DA em imagem por ressonância magnética (IRM), considerando três grupos diferentes, ou seja, cognitivamente normal (CN), comprometimento cognitivo leve (CCL) e DA. Adaptamos redes convolucionais com dados fornecidos principalmente pela ADNI e avaliamos no desafio CADDementia, resultando em um cenário mais próximo das condições no mundo real, em que um sistema DAC é usado em um conjunto de dados diferente daquele usado no treinamento. Os principais desafios e contribuições da nossa pesquisa incluem a criação de um sistema de aprendizagem profunda que seja totalmente automático e comparativamente rápido, ao mesmo tempo em que apresenta resultados competitivos, sem usar qualquer conhecimento específico de domínio. Nomeamos nossa melhor arquitetura ADNet (Alzheimer's Disease Network) e nosso melhor método ADNet-DA (ADNet com adaptação de domínio), o qual superou a maioria das submissões no CADDementia, todas utilizando conhecimento prévio da doença, como regiões de interesse específicas do cérebro. A principal razão para não usar qualquer informação da doença em nosso sistema é fazer com que ele aprenda e extraia padrões relevantes de regiões importantes do cérebro automaticamente, que podem ser usados para apoiar os padrões atuais de diagnóstico e podem inclusive auxiliar em novas descobertas para diferentes ou novas doenças. Após explorar uma série de técnicas de visualização para interpretação de modelos, associada à inteligência artificial explicável (XAI), acreditamos que nosso método possa realmente ser empregado na prática médica. Ao diagnosticar pacientes, é possível que especialistas usem a ADNet para gerar uma diversidade de visualizações explicativas para uma determinada imagem, conforme ilustrado em nossa pesquisa, enquanto a ADNet-DA pode ajudar com o diagnóstico. Desta forma, os especialistas podem chegar a uma decisão mais informada e em menos tempoAbstract: Dementia by Alzheimer's disease (AD) is a clinical syndrome characterized by multiple cognitive problems, including difficulties in memory, executive functions, language and visuospatial skills. Being the most common form of dementia, this disease kills more than breast cancer and prostate cancer combined, and it is the sixth leading cause of death in the United States. Neuroimaging is one of the most promising areas of research for early detection of AD structural biomarkers, where a non-invasive technique is used to capture a digital image of the brain, from which specialists extract patterns and features of the disease. In this context, computer-aided diagnosis (CAD) systems are approaches that aim at assisting doctors and specialists in interpretation of medical data to provide diagnoses for patients. In particular, convolutional neural networks (CNNs) are a special kind of artificial neural network (ANN), which were inspired by how the visual system works, and, in this sense, have been increasingly used in computer vision tasks, achieving impressive results. In our research, one of the main goals was bringing to bear what is most advanced in deep learning research (e.g., CNN) to solve the difficult problem of identifying AD structural biomarkers in magnetic resonance imaging (MRI), considering three different groups, namely, cognitively normal (CN), mild cognitive impairment (MCI), and AD. We tailored convolutional networks with data primarily provided by ADNI, and evaluated them on the CADDementia challenge, thus resulting in a scenario very close to the real-world conditions, in which a CAD system is used on a dataset differently from the one used for training. The main challenges and contributions of our research include devising a deep learning system that is both completely automatic and comparatively fast, while also presenting competitive results, without using any domain specific knowledge. We named our best architecture ADNet (Alzheimer's Disease Network), and our best method ADNet-DA (ADNet with domain adaption), which outperformed most of the CADDementia submissions, all of them using prior knowledge from the disease, such as specific regions of interest of the brain. The main reason for not using any information from the disease in our system is to make it automatically learn and extract relevant patterns from important regions of the brain, which can be used to support current diagnosis standards, and may even assist in new discoveries for different or new diseases. After exploring a number of visualization techniques for model interpretability, associated with explainable artificial intelligence (XAI), we believe that our method can be actually employed in medical practice. While diagnosing patients, it is possible for specialists to use ADNet to generate a diversity of explanatory visualizations for a given image, as illustrated in our research, while ADNet-DA can assist with the diagnosis. This way, specialists can come up with a more informed decision and in less timeMestradoCiência da ComputaçãoMestre em Ciência da Computaçã
    corecore