158 research outputs found

    Deferred setting of scheduling attributes in Ada 2012

    Full text link
    © Sáez Barona, S.; Crespo, A. | ACM, 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Adda Letters, http://dx.doi.org/10.1145/2492312.2492322[EN] Some scheduling techniques, specially in multiprocessor systems, require changing several task attributes atomically to avoid scheduling errors and artifacts. This work proposes to incorporate the deferred attribute setting mechanism to cope with this problem in the next Ada 2012.This work was partially supported by the Vicerectorado de Investigacion of the Universidad Polit ´ ecnica de Valencia under grant PAID-06-10-2397 and European Project OVERSEE (ICT-2009 248333)Sáez Barona, S.; Crespo, A. (2013). Deferred setting of scheduling attributes in Ada 2012. Ada Letters. 33(1):93-100. https://doi.org/10.1145/2492312.2492322S9310033

    Multi-resource management in embedded real-time systems

    Get PDF
    This thesis addresses the problem of online multi-resource management in embedded real-time systems. It focuses on three research questions. The first question concentrates on how to design an efficient hierarchical scheduling framework for supporting independent development and analysis of component based systems, to provide temporal isolation between components. The second question investigates how to change the mapping of resources to tasks and components during run-time efficiently and predictably, and how to analyze the latency of such a system mode change in systems comprised of several scalable components. The third question deals with the scheduling and analysis of a set of parallel-tasks with real-time constraints which require simultaneous access to several different resources. For providing temporal isolation we chose a reservation-based approach. We first focused on processor reservations, where timed events play an important role. Common examples are task deadlines, periodic release of tasks, budget replenishment and budget depletion. Efficient timer management is therefore essential. We investigated the overheads in traditional timer management techniques and presented a mechanism called Relative Timed Event Queues (RELTEQ), which provides an expressive set of primitives at a low processor and memory overhead. We then leveraged RELTEQ to create an efficient, modular and extensible design for enhancing a real-time operating system with periodic tasks, polling, idling periodic and deferrable servers, and a two-level fixed-priority Hierarchical Scheduling Framework (HSF). The HSF design provides temporal isolation and supports independent development of components by separating the global and local scheduling, and allowing each server to define a dedicated scheduler. Furthermore, the design addresses the system overheads inherent to an HSF and prevents undesirable interference between components. It limits the interference of inactive servers on the system level by means of wakeup events and a combination of inactive server queues with a stopwatch queue. Our implementation is modular and requires only a few modifications of the underlying operating system. We then investigated scalable components operating in a memory-constrained system. We first showed how to reduce the memory requirements in a streaming multimedia application, based on a particular priority assignment of the different components along the processing chain. Then we investigated adapting the resource provisions to tasks during runtime, referred to as mode changes. We presented a novel mode change protocol called Swift Mode Changes, which relies on Fixed Priority with Deferred preemption Scheduling to reduce the mode change latency bound compared to existing protocols based on Fixed Priority Preemptive Scheduling. We then presented a new partitioned parallel-task scheduling algorithm called Parallel-SRP (PSRP), which generalizes MSRP for multiprocessors, and the corresponding schedulability analysis for the problem of multi-resource scheduling of parallel tasks with real-time constraints. We showed that the algorithm is deadlock-free, derived a maximum bound on blocking, and used this bound as a basis for a schedulability test. We then demonstrated how PSRP can exploit the inherent parallelism of a platform comprised of multiple heterogeneous resources. Finally, we presented Grasp, which is a visualization toolset aiming to provide insight into the behavior of complex real-time systems. Its flexible plugin infrastructure allows for easy extension with custom visualization and analysis techniques for automatic trace verification. Its capabilities include the visualization of hierarchical multiprocessor systems, including partitioned and global multiprocessor scheduling with migrating tasks and jobs, communication between jobs via shared memory and message passing, and hierarchical scheduling in combination with multiprocessor scheduling. For tracing distributed systems with asynchronous local clocks Grasp also supports the synchronization of traces from different processors during the visualization and analysis

    Adding multiprocessor and mode change support to the Ada real-time framework

    Full text link
    © ACM, 2013. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Ada Letters, April 2013, Volume XXXIII, Number 1. http://doi.acm.org/10.1145/2492312.2492324[EN] Based on a previous proposal of an Ada 2005 framework of real-time utilities, this paper deals with the extension of that framework to include support for multiprocessor platforms and multiple operating modes and mode changes. The design of the proposed framework is also intended to be amenable to automatic code generation.This work is partly funded by the Vicerrectorado de Investigacion of Universitat Politècnica de València under grant PAID-06-10-2397 and the Europan Commission’s OVERSEE project (FP7-ICT-2009-4, Project ID 248333).Sáez Barona, S.; Real Sáez, JV.; Crespo Lorente, A. (2013). Adding multiprocessor and mode change support to the Ada real-time framework. Ada Letters. 33(1):116-127. https://doi.org/10.1145/2492312.2492324S11612733

    Operating System Contribution to Composable Timing Behaviour in High-Integrity Real-Time Systems

    Get PDF
    The development of High-Integrity Real-Time Systems has a high footprint in terms of human, material and schedule costs. Factoring functional, reusable logic in the application favors incremental development and contains costs. Yet, achieving incrementality in the timing behavior is a much harder problem. Complex features at all levels of the execution stack, aimed to boost average-case performance, exhibit timing behavior highly dependent on execution history, which wrecks time composability and incrementaility with it. Our goal here is to restitute time composability to the execution stack, working bottom up across it. We first characterize time composability without making assumptions on the system architecture or the software deployment to it. Later, we focus on the role played by the real-time operating system in our pursuit. Initially we consider single-core processors and, becoming less permissive on the admissible hardware features, we devise solutions that restore a convincing degree of time composability. To show what can be done for real, we developed TiCOS, an ARINC-compliant kernel, and re-designed ORK+, a kernel for Ada Ravenscar runtimes. In that work, we added support for limited-preemption to ORK+, an absolute premiere in the landscape of real-word kernels. Our implementation allows resource sharing to co-exist with limited-preemptive scheduling, which extends state of the art. We then turn our attention to multicore architectures, first considering partitioned systems, for which we achieve results close to those obtained for single-core processors. Subsequently, we shy away from the over-provision of those systems and consider less restrictive uses of homogeneous multiprocessors, where the scheduling algorithm is key to high schedulable utilization. To that end we single out RUN, a promising baseline, and extend it to SPRINT, which supports sporadic task sets, hence matches real-world industrial needs better. To corroborate our results we present findings from real-world case studies from avionic industry

    A Survey of Research into Mixed Criticality Systems

    Get PDF
    This survey covers research into mixed criticality systems that has been published since Vestal’s seminal paper in 2007, up until the end of 2016. The survey is organised along the lines of the major research areas within this topic. These include single processor analysis (including fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, realistic models, and systems issues. The survey also explores the relationship between research into mixed criticality systems and other topics such as hard and soft time constraints, fault tolerant scheduling, hierarchical scheduling, cyber physical systems, probabilistic real-time systems, and industrial safety standards

    Control techniques for thermal-aware energy-efficient real time multiprocessor scheduling

    Get PDF
    La utilización de microprocesadores multinúcleo no sólo es atractiva para la industria sino que en muchos ámbitos es la única opción. La planificación tiempo real sobre estas plataformas es mucho más compleja que sobre monoprocesadores y en general empeoran el problema de sobre-diseño, llevando a la utilización de muchos más procesadores /núcleos de los necesarios. Se han propuesto algoritmos basados en planificación fluida que optimizan la utilización de los procesadores, pero hasta el momento presentan en general inconvenientes que los alejan de su aplicación práctica, no siendo el menor el elevado número de cambios de contexto y migraciones.Esta tesis parte de la hipótesis de que es posible diseñar algoritmos basados en planificación fluida, que optimizan la utilización de los procesadores, cumpliendo restricciones temporales, térmicas y energéticas, con un bajo número de cambios de contexto y migraciones, y compatibles tanto con la generación fuera de línea de ejecutivos cíclicos atractivos para la industria, como de planificadores que integran técnicas de control en tiempo de ejecución que permiten la gestión eficiente tanto de tareas aperiódicas como de desviaciones paramétricas o pequeñas perturbaciones.A este respecto, esta tesis contribuye con varias soluciones. En primer lugar, mejora una metodología de modelo que representa todas las dimensiones del problema bajo un único formalismo (Redes de Petri Continuas Temporizadas). En segundo lugar, propone un método de generación de un ejecutivo cíclico, calculado en ciclos de procesador, para un conjunto de tareas tiempo real duro sobre multiprocesadores que optimiza la utilización de los núcleos de procesamiento respetando también restricciones térmicas y de energía, sobre la base de una planificación fluida. Considerar la sobrecarga derivada del número de cambios de contexto y migraciones en un ejecutivo cíclico plantea un dilema de causalidad: el número de cambios de contexto (y en consecuencia su sobrecarga) no se conoce hasta generar el ejecutivo cíclico, pero dicho número no se puede minimizar hasta que se ha calculado. La tesis propone una solución a este dilema mediante un método iterativo de convergencia demostrada que logra minimizar la sobrecarga mencionada.En definitiva, la tesis consigue explotar la idea de planificación fluida para maximizar la utilización (donde maximizar la utilización es un gran problema en la industria) generando un sencillo ejecutivo cíclico de mínima sobrecarga (ya que la sobrecarga implica un gran problema de los planificadores basados en planificación fluida).Finalmente, se propone un método para utilizar las referencias de la planificación fuera de línea establecida en el ejecutivo cíclico para su seguimiento por parte de un controlador de frecuencia en línea, de modo que se pueden afrontar pequeñas perturbaciones y variaciones paramétricas, integrando la gestión de tareas aperiódicas (tiempo real blando) mientras se asegura la integridad de la ejecución del conjunto de tiempo real duro.Estas aportaciones constituyen una novedad en el campo, refrendada por las publicaciones derivadas de este trabajo de tesis.<br /

    Using Imprecise Computing for Improved Real-Time Scheduling

    Get PDF
    Conventional hard real-time scheduling is often overly pessimistic due to the worst case execution time estimation. The pessimism can be mitigated by exploiting imprecise computing in applications where occasional small errors are acceptable. This leverage is investigated in a few previous works, which are restricted to preemptive cases. We study how to make use of imprecise computing in uniprocessor non-preemptive real-time scheduling, which is known to be more difficult than its preemptive counterpart. Several heuristic algorithms are developed for periodic tasks with independent or cumulative errors due to imprecision. Simulation results show that the proposed techniques can significantly improve task schedulability and achieve desired accuracy– schedulability tradeoff. The benefit of considering imprecise computing is further confirmed by a prototyping implementation in Linux system. Mixed-criticality system is a popular model for reducing pessimism in real-time scheduling while providing guarantee for critical tasks in presence of unexpected overrun. However, it is controversial due to some drawbacks. First, all low-criticality tasks are dropped in high-criticality mode, although they are still needed. Second, a single high-criticality job overrun leads to the pessimistic high-criticality mode for all high-criticality tasks and consequently resource utilization becomes inefficient. We attempt to tackle aforementioned two limitations of mixed-criticality system simultaneously in multiprocessor scheduling, while those two issues are mostly focused on uniprocessor scheduling in several recent works. We study how to achieve graceful degradation of low-criticality tasks by continuing their executions with imprecise computing or even precise computing if there is sufficient utilization slack. Schedulability conditions under this Variable-Precision Mixed-Criticality (VPMC) system model are investigated for partitioned scheduling and global fpEDF-VD scheduling. And a deferred switching protocol is introduced so that the chance of switching to high-criticality mode is significantly reduced. Moreover, we develop a precision optimization approach that maximizes precise computing of low-criticality tasks through 0-1 knapsack formulation. Experiments are performed through both software simulations and Linux proto- typing with consideration of overhead. Schedulability of the proposed methods is studied so that the Quality-of-Service for low-criticality tasks is improved with guarantee of satisfying all deadline constraints. The proposed precision optimization can largely reduce computing errors compared to constantly executing low-criticality tasks with imprecise computing in high-criticality mode

    Limited Pre-emptive Global Fixed Task Priority

    Get PDF
    Abstract-In this paper a limited pre-emptive global fixed task priority scheduling policy for multiprocessors is presented. This scheduling policy is a generalization of global fully pre-emptive and non-pre-emptive fixed task priority policies for platforms with at least two homogeneous processors. The scheduling protocol devised is such that a job can only be blocked at most once by a body of lower priority non-pre-emptive workload. The presented policy dominates both fully pre-emptive and fully non-pre-emptive with respect to schedulability. A sufficient schedulability test is presented for this policy. Several approaches to estimate the blocking generated by lower priority non-pre-emptive regions are presented. As a last contribution it is experimentally shown that, on the average case, the number of pre-emptions observed in a schedule are drastically reduced in comparison to global fully pre-emptive scheduling
    • …
    corecore