39,379 research outputs found

    A simple SIR model with a large set of asymptomatic infectives

    Get PDF
    There is increasing evidence that one of the most difficult problems in trying to control the ongoing COVID-19 epidemic is the presence of a large cohort of asymptomatic infectives. We develop a SIR-type model taking into account the presence of asymptomatic, or however undetected, infective, and the substantially long time these spend being infective and not isolated. We discuss how a SIR-based prediction of the epidemic course based on early data but not taking into account the presence of a large set of asymptomatic infectives would give wrong estimate of very relevant quantities such as the need of hospital beds, the time to the epidemic peak, and the number of people which are left untouched by the first wave and thus in danger in case of a second epidemic wave. In the second part of the note, we apply our model to the COVID-19 epidemics in Italy. We obtain a good agreement with epidemiological data; according to the best fit of epidemiological data in terms of this model, only 10\% of infectives in Italy is symptomatic.Comment: V4 (hopefully final) contains analysis of data up to May 15, 202

    Pulse vaccination in the periodic infection rate SIR epidemic model

    Full text link
    A pulse vaccination SIR model with periodic infection rate Ī²(t)\beta (t) have been proposed and studied. The basic reproductive number R0R_0 is defined. The dynamical behaviors of the model are analyzed with the help of persistence, bifurcation and global stability. It has been shown that the infection-free periodic solution is globally stable provided R0<1R_0 < 1 and is unstable if R0>1R_0>1. Standard bifurcation theory have been used to show the existence of the positive periodic solution for the case of R0ā†’1+R_0 \to1^+. Finally, the numerical simulations have been performed to show the uniqueness and the global stability of the positive periodic solution of the system.Comment: 17pages and 3figures, submmission to Mathematical Bioscience

    Fitting stochastic epidemic models to gene genealogies using linear noise approximation

    Get PDF
    Phylodynamics is a set of population genetics tools that aim at reconstructing demographic history of a population based on molecular sequences of individuals sampled from the population of interest. One important task in phylodynamics is to estimate changes in (effective) population size. When applied to infectious disease sequences such estimation of population size trajectories can provide information about changes in the number of infections. To model changes in the number of infected individuals, current phylodynamic methods use non-parametric approaches, parametric approaches, and stochastic modeling in conjunction with likelihood-free Bayesian methods. The first class of methods yields results that are hard-to-interpret epidemiologically. The second class of methods provides estimates of important epidemiological parameters, such as infection and removal/recovery rates, but ignores variation in the dynamics of infectious disease spread. The third class of methods is the most advantageous statistically, but relies on computationally intensive particle filtering techniques that limits its applications. We propose a Bayesian model that combines phylodynamic inference and stochastic epidemic models, and achieves computational tractability by using a linear noise approximation (LNA) --- a technique that allows us to approximate probability densities of stochastic epidemic model trajectories. LNA opens the door for using modern Markov chain Monte Carlo tools to approximate the joint posterior distribution of the disease transmission parameters and of high dimensional vectors describing unobserved changes in the stochastic epidemic model compartment sizes (e.g., numbers of infectious and susceptible individuals). We apply our estimation technique to Ebola genealogies estimated using viral genetic data from the 2014 epidemic in Sierra Leone and Liberia.Comment: 43 pages, 6 figures in the main tex
    • ā€¦
    corecore