16,340 research outputs found

    Incremental and Modular Context-sensitive Analysis

    Full text link
    Context-sensitive global analysis of large code bases can be expensive, which can make its use impractical during software development. However, there are many situations in which modifications are small and isolated within a few components, and it is desirable to reuse as much as possible previous analysis results. This has been achieved to date through incremental global analysis fixpoint algorithms that achieve cost reductions at fine levels of granularity, such as changes in program lines. However, these fine-grained techniques are not directly applicable to modular programs, nor are they designed to take advantage of modular structures. This paper describes, implements, and evaluates an algorithm that performs efficient context-sensitive analysis incrementally on modular partitions of programs. The experimental results show that the proposed modular algorithm shows significant improvements, in both time and memory consumption, when compared to existing non-modular, fine-grain incremental analysis techniques. Furthermore, thanks to the proposed inter-modular propagation of analysis information, our algorithm also outperforms traditional modular analysis even when analyzing from scratch.Comment: 56 pages, 27 figures. To be published in Theory and Practice of Logic Programming. v3 corresponds to the extended version of the ICLP2018 Technical Communication. v4 is the revised version submitted to Theory and Practice of Logic Programming. v5 (this one) is the final author version to be published in TPL

    Classification and Verification of Online Handwritten Signatures with Time Causal Information Theory Quantifiers

    Get PDF
    We present a new approach for online handwritten signature classification and verification based on descriptors stemming from Information Theory. The proposal uses the Shannon Entropy, the Statistical Complexity, and the Fisher Information evaluated over the Bandt and Pompe symbolization of the horizontal and vertical coordinates of signatures. These six features are easy and fast to compute, and they are the input to an One-Class Support Vector Machine classifier. The results produced surpass state-of-the-art techniques that employ higher-dimensional feature spaces which often require specialized software and hardware. We assess the consistency of our proposal with respect to the size of the training sample, and we also use it to classify the signatures into meaningful groups.Comment: Submitted to PLOS On
    • …
    corecore