1,320 research outputs found

    Nonholonomic motion planning: steering using sinusoids

    Get PDF
    Methods for steering systems with nonholonomic constraints between arbitrary configurations are investigated. Suboptimal trajectories are derived for systems that are not in canonical form. Systems in which it takes more than one level of bracketing to achieve controllability are considered. The trajectories use sinusoids at integrally related frequencies to achieve motion at a given bracketing level. A class of systems that can be steered using sinusoids (claimed systems) is defined. Conditions under which a class of two-input systems can be converted into this form are given

    Smooth Spline-based Trajectory Planning for Semi-Rigid Multi-Robot Formations

    Get PDF
    This paper presents an approach for smooth trajectory planning in semi-rigid nonholonomic mobile robot formations using Bezier-splines. Unlike most existing approaches, the focus is on maintaining a semi-rigid formation, as required in many scenarios such as object transport, handling or assembly. We use a Relaxed A* planner to create an optimal collision-free global path and then smooth this path using splines. The smoothed global path serves to create target paths for every robot in the formation. From these paths, we then calculate the trajectories for each robot. In an iterative process, we match the velocities of the robots so that all trajectories are synchronized, and the dynamic limits of all robots are maintained. We provide experimental validation, which confirms no violation of the dynamic limits and shows an excellent control performance for a system of three robots moving at 0.3 m/s

    A novel coordination framework for multi-robot systems

    Get PDF
    Having made great progress tackling the basic problems concerning single-robot systems, many researchers shifted their focus towards the study of multi-robot systems (MRS). MRS were shortly found to be a perfect t for tasks considered to be hard, complex or even impossible for a single robot to perform, e.g. spatially separate tasks. One core research problem of MRS is robots' coordinated motion planning and control. Arti cial potential elds (APFs) and virtual spring-damper bonds are among the most commonly used models to attack the trajectory planning problem of MRS coordination. However, although mathematically sound, these approaches fail to guarantee inter-robot collision-free path generation. This is particularly the case when robots' dynamics, nonholonomic constraints and complex geometry are taken into account. In this thesis, a novel bio-inspired collision avoidance framework via virtual shells is proposed and augmented into the high-level trajectory planner. Safe trajectories can hence be generated for the low-level controllers to track. Motion control is handled by the design of hierarchical controllers which utilize virtual inputs. Several distinct coordinated task scenarios for 2D and 3D environments are presented as a proof of concept. Simulations are conducted with groups of three, four, ve and ten nonholonomic mobile robots as well as groups of three and ve quadrotor UAVs. The performance of the overall improved coordination structure is veri ed with very promising result

    Virtual Structure Based Formation Tracking of Multiple Wheeled Mobile Robots: An Optimization Perspective

    Get PDF
    Today, with the increasing development of science and technology, many systems need to be optimized to find the optimal solution of the system. this kind of problem is also called optimization problem. Especially in the formation problem of multi-wheeled mobile robots, the optimization algorithm can help us to find the optimal solution of the formation problem. In this paper, the formation problem of multi-wheeled mobile robots is studied from the point of view of optimization. In order to reduce the complexity of the formation problem, we first put the robots with the same requirements into a group. Then, by using the virtual structure method, the formation problem is reduced to a virtual WMR trajectory tracking problem with placeholders, which describes the expected position of each WMR formation. By using placeholders, you can get the desired track for each WMR. In addition, in order to avoid the collision between multiple WMR in the group, we add an attraction to the trajectory tracking method. Because MWMR in the same team have different attractions, collisions can be easily avoided. Through simulation analysis, it is proved that the optimization model is reasonable and correct. In the last part, the limitations of this model and corresponding suggestions are given

    Challenges and Solutions for Autonomous Robotic Mobile Manipulation for Outdoor Sample Collection

    Get PDF
    In refinery, petrochemical, and chemical plants, process technicians collect uncontaminated samples to be analyzed in the quality control laboratory all time and all weather. This traditionally manual operation not only exposes the process technicians to hazardous chemicals, but also imposes an economical burden on the management. The recent development in mobile manipulation provides an opportunity to fully automate the operation of sample collection. This paper reviewed the various challenges in sample collection in terms of navigation of the mobile platform and manipulation of the robotic arm from four aspects, namely mobile robot positioning/attitude using global navigation satellite system (GNSS), vision-based navigation and visual servoing, robotic manipulation, mobile robot path planning and control. This paper further proposed solutions to these challenges and pointed the main direction of development in mobile manipulation

    Efficient mobile robot path planning by Voronoi-based heuristic

    Get PDF
    [no abstract
    • …
    corecore