364,220 research outputs found

    Using schedulers to test probabilistic distributed systems

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-012-0244-5. Copyright © 2012, British Computer Society.Formal methods are one of the most important approaches to increasing the confidence in the correctness of software systems. A formal specification can be used as an oracle in testing since one can determine whether an observed behaviour is allowed by the specification. This is an important feature of formal testing: behaviours of the system observed in testing are compared with the specification and ideally this comparison is automated. In this paper we study a formal testing framework to deal with systems that interact with their environment at physically distributed interfaces, called ports, and where choices between different possibilities are probabilistically quantified. Building on previous work, we introduce two families of schedulers to resolve nondeterministic choices among different actions of the system. The first type of schedulers, which we call global schedulers, resolves nondeterministic choices by representing the environment as a single global scheduler. The second type, which we call localised schedulers, models the environment as a set of schedulers with there being one scheduler for each port. We formally define the application of schedulers to systems and provide and study different implementation relations in this setting

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Globally Distributed Software Process Engineering

    Get PDF
    Software processes is becoming a more addressed issue in software development companies every day. These processes are defined regardless of the environment in which they run. To incorporate aspects of that environment is essential, especially if referring to GSE. Despite this fact, the process itself should not be necessary modified. This paper provides a first draft of a research focused on software process definition, modeling, implementation and evaluation in a GSE environment, so as to facilitate the information exchange through a hierarchical process that does not involve modification of specific processes.Ministerio de Educación y Ciencia TIN2007-67843-C06-03Ministerio de Educación y Ciencia TIN2010-20057-C03-0

    PRISE: An Integrated Platform for Research and Teaching of Critical Embedded Systems

    Get PDF
    In this paper, we present PRISE, an integrated workbench for Research and Teaching of critical embedded systems at ISAE, the French Institute for Space and Aeronautics Engineering. PRISE is built around state-of-the-art technologies for the engineering of space and avionics systems used in Space and Avionics domain. It aims at demonstrating key aspects of critical, real-time, embedded systems used in the transport industry, but also validating new scientific contributions for the engineering of software functions. PRISE combines embedded and simulation platforms, and modeling tools. This platform is available for both research and teaching. Being built around widely used commercial and open source software; PRISE aims at being a reference platform for our teaching and research activities at ISAE

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa

    Organization of Multi-Agent Systems: An Overview

    Full text link
    In complex, open, and heterogeneous environments, agents must be able to reorganize towards the most appropriate organizations to adapt unpredictable environment changes within Multi-Agent Systems (MAS). Types of reorganization can be seen from two different levels. The individual agents level (micro-level) in which an agent changes its behaviors and interactions with other agents to adapt its local environment. And the organizational level (macro-level) in which the whole system changes it structure by adding or removing agents. This chapter is dedicated to overview different aspects of what is called MAS Organization including its motivations, paradigms, models, and techniques adopted for statically or dynamically organizing agents in MAS.Comment: 12 page

    Scenarios-based testing of systems with distributed ports

    Get PDF
    Copyright @ 2011 John Wiley & SonsDistributed systems are usually composed of several distributed components that communicate with their environment through specific ports. When testing such a system we separately observe sequences of inputs and outputs at each port rather than a global sequence and potentially cannot reconstruct the global sequence that occurred. Typically, the users of such a system cannot synchronise their actions during use or testing. However, the use of the system might correspond to a sequence of scenarios, where each scenario involves a sequence of interactions with the system that, for example, achieves a particular objective. When this is the case there is the potential for there to be a significant delay between two scenarios and this effectively allows the users of the system to synchronise between scenarios. If we represent the specification of the global system by using a state-based notation, we say that a scenario is any sequence of events that happens between two of these operations. We can encode scenarios in two different ways. The first approach consists of marking some of the states of the specification to denote these synchronisation points. It transpires that there are two ways to interpret such models and these lead to two implementation relations. The second approach consists of adding a set of traces to the specification to represent the traces that correspond to scenarios. We show that these two approaches have similar expressive power by providing an encoding from marked states to sets of traces. In order to assess the appropriateness of our new framework, we show that it represents a conservative extension of previous implementation relations defined in the context of the distributed test architecture: if we onsider that all the states are marked then we simply obtain ioco (the classical relation for single-port systems) while if no state is marked then we obtain dioco (our previous relation for multi-port systems). Finally, we concentrate on the study of controllable test cases, that is, test cases such that each local tester knows exactly when to apply inputs. We give two notions of controllable test cases, define an implementation relation for each of these notions, and relate them. We also show how we can decide whether a test case satisfies these conditions.Research partially supported by the Spanish MEC project TESIS (TIN2009-14312-C02-01), the UK EPSRC project Testing of Probabilistic and Stochastic Systems (EP/G032572/1), and the UCM-BSCH programme to fund research groups (GR58/08 - group number 910606)

    Patterns-based Evaluation of Open Source BPM Systems: The Cases of jBPM, OpenWFE, and Enhydra Shark

    Get PDF
    In keeping with the proliferation of free software development initiatives and the increased interest in the business process management domain, many open source workflow and business process management systems have appeared during the last few years and are now under active development. This upsurge gives rise to two important questions: what are the capabilities of these systems? and how do they compare to each other and to their closed source counterparts? i.e. in other words what is the state-of-the-art in the area?. To gain an insight into the area, we have conducted an in-depth analysis of three of the major open source workflow management systems - jBPM, OpenWFE and Enhydra Shark, the results of which are reported here. This analysis is based on the workflow patterns framework and provides a continuation of the series of evaluations performed using the same framework on closed source systems, business process modeling languages and web-service composition standards. The results from evaluations of the three open source systems are compared with each other and also with the results from evaluations of three representative closed source systems - Staffware, WebSphere MQ and Oracle BPEL PM, documented in earlier works. The overall conclusion is that open source systems are targeted more toward developers rather than business analysts. They generally provide less support for the patterns than closed source systems, particularly with respect to the resource perspective which describes the various ways in which work is distributed amongst business users and managed through to completion
    corecore