258 research outputs found

    Path planning and collision avoidance for autonomous surface vehicles I: a review

    Get PDF
    Autonomous surface vehicles are gaining increasing attention worldwide due to the potential benefits of improving safety and efficiency. This has raised the interest in developing methods for path planning that can reduce the risk of collisions, groundings, and stranding accidents at sea, as well as costs and time expenditure. In this paper, we review guidance, and more specifically, path planning algorithms of autonomous surface vehicles and their classification. In particular, we highlight vessel autonomy, regulatory framework, guidance, navigation and control components, advances in the industry, and previous reviews in the field. In addition, we analyse the terminology used in the literature and attempt to clarify ambiguities in commonly used terms related to path planning. Finally, we summarise and discuss our findings and highlight the potential need for new regulations for autonomous surface vehicles

    Autonomous navigation strategies for UGVs/UAVs

    Get PDF

    A Novel Path Planning Optimization Algorithm Based on Particle Swarm Optimization for UAVs for Bird Monitoring and Repelling

    Get PDF
    Bird damage to fruit crops causes significant monetary losses to farmers annually. The application of traditional bird repelling methods such as bird cannons and tree netting become inefficient in the long run, requiring high maintenance and reducing mobility. Due to their versatility, Unmanned Aerial Vehicles (UAVs) can be beneficial to solve this problem. However, due to their low battery capacity that equals low flight duration, it is necessary to evolve path planning optimization. A novel path planning optimization algorithm of UAVs based on Particle Swarm Optimization (PSO) is presented in this paper. This path planning optimization algorithm aims to manage the drone’s distance and flight time, applying optimization and randomness techniques to overcome the disadvantages of the traditional systems. The proposed algorithm’s performance was tested in three study cases: two of them in simulation to test the variation of each parameter and one in the field to test the influence on battery management and height influence. All cases were tested in the three possible situations: same incidence rate, different rates, and different rates with no bird damage to fruit crops. The field tests were also essential to understand the algorithm’s behavior of the path planning algorithm in the UAV, showing that there is less efficiency with fewer points of interest, but this does not correlate with the flight time. In addition, there is no association between the maximum horizontal speed and the flight time, which means that the function to calculate the total distance for path planning needs to be adjusted. Thus, the proposed algorithm presents promising results with an outstanding reduced average error in the total distance for the path planning obtained and low execution time, being suited for this and other applications.This research work is within the activities of PrunusBot project—Autonomous controlled spraying aerial robotic system and fruit production forecast, Operation No. PDR2020-101-031358 (leader), Consortium No. 340, Initiative No. 140, promoted by PDR2020 and co-financed by the EAFRD and the European Union under the Portugal 2020 program.info:eu-repo/semantics/publishedVersio
    • …
    corecore