100 research outputs found

    Marsupial ๋กœ๋ด‡ ํŒ€์˜ ํšจ์œจ์ ์ธ ๋ฐฐ์น˜ ๋ฐ ํšŒ์ˆ˜๋ฅผ ์œ„ํ•œ ๊ฒฝ๋กœ ๊ณ„ํš์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 8. ์ด๋ฒ”ํฌ.This dissertation presents time-efficient approaches to path planning for initial deployment and collection of a heterogeneous marsupial robot team consists of a large-scale carrier robot and multiple mobile robots. Although much research has been conducted about task allocation and path planning of multi-robot systems, the path planning problems for deployment and collection of a marsupial robot team have not been fully addressed. The objectives of the problems are to minimize the duration that mobile robots require to reach their assigned task locations and return from those locations. Taking the small mobile robot's energy constraint into account, a large-scale carrier robot, which is faster than a mobile robot, is considered for efficient deployment and collection. The carrier robot oversees transporting, deploying, and retrieving of mobile robots, whereas the mobile robots are responsible for carrying out given tasks such as reconnaissance and search and rescue. The path planning methods are introduced in both an open space without obstacles and a roadmap graph which avoids obstacles. For the both cases, determining optimal path requires enormous search space whose computational complexity is equivalent to solving a combinatorial optimization problem. To reduce the amount of computation, both task locations and mobile robots to be collected are divided into a number of clusters according to their geographical adjacency and their energies. Next, the cluster are sorted based on the location of the carrier robot. Then, an efficient path for the carrier robot can be generated by traveling to each deploying and loading location relevant to each cluster. The feasibility of the proposed algorithms is demonstrated through several simulations in various environments including three-dimensional space and dynamic task environment. Finally, the performance of the proposed algorithms is also demonstrated by comparing with other simple methods.Chapter 1 Introduction 1 1.1 Background and motivation 1 1.1.1 Multi-robot system 1 1.1.2 Marsupial robot team 3 1.2 Contributions of the thesis 9 Chapter 2 Related Work 13 2.1 Multi-robot path planning 14 2.2 Multi-robot exploration 14 2.3 Multi-robot task allocation 15 2.4 Simultaneous localization and mapping 15 2.5 Motion planning of collective swarm 16 2.6 Marsupial robot team 18 2.6.1 Multi-robot deployment 18 2.6.2 Marsupial robot 19 2.7 Robot collection 23 2.8 Roadmap generation 24 2.8.1 Geometric algorithms 24 2.8.2 Sampling-based algorithms 25 2.9 Novelty of the thesis 26 Chapter 3 Preliminaries 27 3.1 Notation 27 3.2 Assumptions 29 3.3 Clustering algorithm 30 3.4 Minimum bounded circle and sphere of a cluster 32 Chapter 4 Deployment of a Marsupial Robot Team 35 4.1 Problem definition 35 4.2 Complexity analysis 37 4.3 Optimal deployment path planning for two tasks 38 4.3.1 Deployment for two tasks in 2D space 39 4.3.2 Deployment for two tasks in 3D space 41 4.4 Path planning algorithm of a marsupial robot team for deployment 42 4.5 Simulation result 49 4.5.1 Simulation setup 49 4.5.2 Deployment scenarios in 2D space 50 4.5.3 Deployment scenarios in 3D space 57 4.5.4 Deployment in a dynamic environment 60 4.6 Performance evaluation 62 4.6.1 Computation time 62 4.6.2 Efficiency of the path 64 Chapter 5 Collection of a Marsupial Robot Team 67 5.1 Problem definition 68 5.2 Complexity analysis 70 5.3 Optimal collection path planning for two rovers 71 5.3.1 Collection for two rovers in 2D space 71 5.3.2 Collection for two rovers in 3D space 75 5.4 Path planning algorithm of a marsupial robot team for collection 76 5.5 Simulation result 83 5.5.1 Collection scenarios in 2D space 83 5.5.2 Collection scenarios in 3D space 88 5.5.3 Collection in a dynamic environment 91 5.6 Performance evaluation 93 5.6.1 Computation time 93 5.6.2 Efficiency of the path 95 Chapter 6 Deployment of a Marsupial Robot Team using a Graph 99 6.1 Problem definition 99 6.2 Framework 101 6.3 Probabilistic roadmap generation 102 6.3.1 Global PRM 103 6.3.2 Local PRM 105 6.4 Path planning strategy 105 6.4.1 Clustering scheme 106 6.4.2 Determining deployment locations 109 6.4.3 Path smoothing 113 6.4.4 Path planning algorithm for a marsupial robot team 115 6.5 Simulation result 116 6.5.1 Outdoor space without obstacle 116 6.5.2 Outdoor space with obstacles 118 6.5.3 Office area 119 6.5.4 University research building 122 Chapter 7 Conclusion 125 Bibliography 129 ์ดˆ๋ก 151Docto

    2008 IMSAloquium, Student Investigation Showcase

    Get PDF
    Marking its twentieth year, IMSAโ€™s Student Inquiry and Research Program (SIR) is a powerful expression of the Academyโ€™s mission, โ€œto ignite and nurture creative ethical minds that advance the human condition.โ€https://digitalcommons.imsa.edu/archives_sir/1000/thumbnail.jp

    Toward a Framework for Systematically Categorizing Future UAS Threat Space

    Get PDF
    Title from PDF of title page, viewed September 21, 2022Dissertation advisor: Travis FieldsVitaIncludes bibliographical references (pages 241-270)Dissertation (Ph.D.)--Department of Civil and Mechanical Engineering, Department of Electrical and Computer Engineering. University of Missouri--Kansas City, 2021The development of unmanned aerial vehicles (UAVs) is occurring as fast or faster than any other innovation throughout the course of human history. Building an effective means of defending against threats posed by malicious applications of novel technology is imperative in the current global landscape. Gone are the days where the enemy and the threat it poses are well defined and understood. Defensive technologies have to be modular and able to adapt to a threat technology space which is likely to recycle several times over during the course of a single defense system acquisition cycle. This manuscript wrestles with understanding the unique threat posed by UAVs and related technologies. A thorough taxonomy of the problem is given including projections for how the defining characteristics of the problem are likely to change and grow in the near future. Next, a discussion of the importance of tactics related to the problem of a rapidly changing threat space is provided. A discussion of case studies related to lessons learned from military acquisition programs and pivotal technological innovations in the course of history are given. Multiple measures of success are proposed which are designed to allow for meaningful comparisons and honest evaluations of capabilities. These measures are designed to facilitate discussions by providing a common, and comprehensible language that accounts for the vast complexity of the problem space without getting bogged down by the details. Lastly, predictions for the future threat space comprising UAVs is given. The contributions of this work are thus threefold. Firstly, an analytic framework is presented including a detailed parameterization of the problem as well as various solution techniques borrowed from a variety of fields. Secondly, measures of success are presented which attempt to compare the effectiveness of various systems by converting to expected values in terms of effective range, or extending the popular concept of kill chain and collapsing effectiveness into units of time. A novel technique for measuring effectiveness is presented whereby effectiveness is composed of various individual probabilities. Probabilities and associated distributions can be combined according to the rules of joint probabilities and distributions and allows performance against a probabilistic threat to be measured succinctly and effectively. The third contribution concerns predictions made with respect to the UAS threat space in the future. These predictions are designed to allow for defensive systems to be developed with a high expected effectiveness against current and future threats. Essentially this work comprises a first attempt toward developing a complete framework related to engagement and mission level modeling of a generic defensive system (or combination of systems) in the face of current and future threats presented by UAS.Introduction -- Literature review -- War gaming -- Measures of success -- Conclusion

    2021-2022, University of Memphis bulletin

    Get PDF
    University of Memphis bulletin containing the graduate catalog for 2021-2022.https://digitalcommons.memphis.edu/speccoll-ua-pub-bulletins/1441/thumbnail.jp
    • โ€ฆ
    corecore