22,047 research outputs found

    1-Bit Matrix Completion under Exact Low-Rank Constraint

    Full text link
    We consider the problem of noisy 1-bit matrix completion under an exact rank constraint on the true underlying matrix Mβˆ—M^*. Instead of observing a subset of the noisy continuous-valued entries of a matrix Mβˆ—M^*, we observe a subset of noisy 1-bit (or binary) measurements generated according to a probabilistic model. We consider constrained maximum likelihood estimation of Mβˆ—M^*, under a constraint on the entry-wise infinity-norm of Mβˆ—M^* and an exact rank constraint. This is in contrast to previous work which has used convex relaxations for the rank. We provide an upper bound on the matrix estimation error under this model. Compared to the existing results, our bound has faster convergence rate with matrix dimensions when the fraction of revealed 1-bit observations is fixed, independent of the matrix dimensions. We also propose an iterative algorithm for solving our nonconvex optimization with a certificate of global optimality of the limiting point. This algorithm is based on low rank factorization of Mβˆ—M^*. We validate the method on synthetic and real data with improved performance over existing methods.Comment: 6 pages, 3 figures, to appear in CISS 201

    Towards Fast-Convergence, Low-Delay and Low-Complexity Network Optimization

    Full text link
    Distributed network optimization has been studied for well over a decade. However, we still do not have a good idea of how to design schemes that can simultaneously provide good performance across the dimensions of utility optimality, convergence speed, and delay. To address these challenges, in this paper, we propose a new algorithmic framework with all these metrics approaching optimality. The salient features of our new algorithm are three-fold: (i) fast convergence: it converges with only O(log⁑(1/ϡ))O(\log(1/\epsilon)) iterations that is the fastest speed among all the existing algorithms; (ii) low delay: it guarantees optimal utility with finite queue length; (iii) simple implementation: the control variables of this algorithm are based on virtual queues that do not require maintaining per-flow information. The new technique builds on a kind of inexact Uzawa method in the Alternating Directional Method of Multiplier, and provides a new theoretical path to prove global and linear convergence rate of such a method without requiring the full rank assumption of the constraint matrix
    • …
    corecore