844 research outputs found

    Sensor-Assisted Global Motion Estimation for Efficient UAV Video Coding

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.In this paper, we propose a novel video coding scheme to significantly reduce the coding complexity and enhance overall coding efficiency in videos acquired by high mobility devices such as unmanned aerial vehicles (UAVs). In order to reduce the encoded data bits and encoding time to facilitate real-time data transmission, as well as minimize the image distortion caused by the jitter of onboard camera, a sensor-assisted global motion estimation (GMV) algorithm is designed to calculate perspective transformation model and global motion vectors, which are used in both the inter-frame coding to improve the coding efficiency and intra-frame coding to reduce block search complexity. We conducted comprehensive simulation experiments on official HM-16.10 codec and the performance results show the proposed method can achieve faster block search by 50% to 60% speedup and lower bitrate by 15% to 30% compared with standard HEVC coding software

    H.264 sensor aided video encoder for UAV BLOS missions

    Get PDF
    This paper presents a new low-complexity H.264 encoder, based on x264 implementation, for Unmanned Aerial Vehicles (UAV) applications. The encoder employs a new motion estimation scheme which make use of the global motion information provided by the onboard navigation system. The results are relevant in low frame rate video coding, which is a typical scenario in UAV behind line-of-sight (BLOS) missions

    Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Towards 6G

    Full text link
    The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.Comment: Submitted for review to IEEE CS&

    Machine Learning-Aided Operations and Communications of Unmanned Aerial Vehicles: A Contemporary Survey

    Full text link
    The ongoing amalgamation of UAV and ML techniques is creating a significant synergy and empowering UAVs with unprecedented intelligence and autonomy. This survey aims to provide a timely and comprehensive overview of ML techniques used in UAV operations and communications and identify the potential growth areas and research gaps. We emphasise the four key components of UAV operations and communications to which ML can significantly contribute, namely, perception and feature extraction, feature interpretation and regeneration, trajectory and mission planning, and aerodynamic control and operation. We classify the latest popular ML tools based on their applications to the four components and conduct gap analyses. This survey also takes a step forward by pointing out significant challenges in the upcoming realm of ML-aided automated UAV operations and communications. It is revealed that different ML techniques dominate the applications to the four key modules of UAV operations and communications. While there is an increasing trend of cross-module designs, little effort has been devoted to an end-to-end ML framework, from perception and feature extraction to aerodynamic control and operation. It is also unveiled that the reliability and trust of ML in UAV operations and applications require significant attention before full automation of UAVs and potential cooperation between UAVs and humans come to fruition.Comment: 36 pages, 304 references, 19 Figure

    Enhancing Farm-Level Decision Making through Innovation

    Get PDF

    Enhancing Farm-Level Decision Making through Innovation

    Get PDF
    New information and knowledge are important aspects of innovation in modern farming systems. There is currently an abundance of digital and data-driven solutions that can potentially transform our food systems. At a time when the general public has concerns about how food is produced and the impact of farm production systems on the environment, strategies to increase public acceptance and the sustainability of food production are required more than ever. New tools and technology can provide timely insights into aspects such as nutrient profiles, the tracking of animal or plant wellbeing, and land-use options to enhance inputs and outputs associated with the farm business. Such solutions have the ultimate aim of enhancing production efficiency and contributing to the process of learning about the advantages of the innovation, while ensuring more sustainable food supplies. At the farm level, any new information needs to be in a useful format and beneficial for management and farm decision-making. The papers in this Special Issue evaluate agri-business innovation that can enhance farm-level decision-making
    • …
    corecore