1,078 research outputs found

    Appearance-based localization for mobile robots using digital zoom and visual compass

    Get PDF
    This paper describes a localization system for mobile robots moving in dynamic indoor environments, which uses probabilistic integration of visual appearance and odometry information. The approach is based on a novel image matching algorithm for appearance-based place recognition that integrates digital zooming, to extend the area of application, and a visual compass. Ambiguous information used for recognizing places is resolved with multiple hypothesis tracking and a selection procedure inspired by Markov localization. This enables the system to deal with perceptual aliasing or absence of reliable sensor data. It has been implemented on a robot operating in an office scenario and the robustness of the approach demonstrated experimentally

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Building a grid-semantic map for the navigation of service robots through human–robot interaction

    Get PDF
    AbstractThis paper presents an interactive approach to the construction of a grid-semantic map for the navigation of service robots in an indoor environment. It is based on the Robot Operating System (ROS) framework and contains four modules, namely Interactive Module, Control Module, Navigation Module and Mapping Module. Three challenging issues have been focused during its development: (i) how human voice and robot visual information could be effectively deployed in the mapping and navigation process; (ii) how semantic names could combine with coordinate data in an online Grid-Semantic map; and (iii) how a localization–evaluate–relocalization method could be used in global localization based on modified maximum particle weight of the particle swarm. A number of experiments are carried out in both simulated and real environments such as corridors and offices to verify its feasibility and performance

    Categorization of indoor places by combining local binary pattern histograms of range and reflectance data from laser range finders

    Get PDF
    This paper presents an approach to categorize typical places in indoor environments using 3D scans provided by a laser range finder. Examples of such places are offices, laboratories, or kitchens. In our method, we combine the range and reflectance data from the laser scan for the final categorization of places. Range and reflectance images are transformed into histograms of local binary patterns and combined into a single feature vector. This vector is later classified using support vector machines. The results of the presented experiments demonstrate the capability of our technique to categorize indoor places with high accuracy. We also show that the combination of range and reflectance information improves the final categorization results in comparison with a single modality

    Autonomous Navigation and Mapping using Monocular Low-Resolution Grayscale Vision

    Get PDF
    Vision has been a powerful tool for navigation of intelligent and man-made systems ever since the cybernetics revolution in the 1970s. There have been two basic approaches to the navigation of computer controlled systems: The self-contained bottom-up development of sensorimotor abilities, namely perception and mobility, and the top-down approach, namely artificial intelligence, reasoning and knowledge based methods. The three-fold goal of autonomous exploration, mapping and localization of a mobile robot however, needs to be developed within a single framework. An algorithm is proposed to answer the challenges of autonomous corridor navigation and mapping by a mobile robot equipped with a single forward-facing camera. Using a combination of corridor ceiling lights, visual homing, and entropy, the robot is able to perform straight line navigation down the center of an unknown corridor. Turning at the end of a corridor is accomplished using Jeffrey divergence and time-to-collision, while deflection from dead ends and blank walls uses a scalar entropy measure of the entire image. When combined, these metrics allow the robot to navigate in both textured and untextured environments. The robot can autonomously explore an unknown indoor environment, recovering from difficult situations like corners, blank walls, and initial heading toward a wall. While exploring, the algorithm constructs a Voronoi-based topo-geometric map with nodes representing distinctive places like doors, water fountains, and other corridors. Because the algorithm is based entirely upon low-resolution (32 x 24) grayscale images, processing occurs at over 1000 frames per second

    Map Building and Monte Carlo Localization Using Global Appearance of Omnidirectional Images

    Get PDF
    In this paper we deal with the problem of map building and localization of a mobile robot in an environment using the information provided by an omnidirectional vision sensor that is mounted on the robot. Our main objective consists of studying the feasibility of the techniques based in the global appearance of a set of omnidirectional images captured by this vision sensor to solve this problem. First, we study how to describe globally the visual information so that it represents correctly locations and the geometrical relationships between these locations. Then, we integrate this information using an approach based on a spring-mass-damper model, to create a topological map of the environment. Once the map is built, we propose the use of a Monte Carlo localization approach to estimate the most probable pose of the vision system and its trajectory within the map. We perform a comparison in terms of computational cost and error in localization. The experimental results we present have been obtained with real indoor omnidirectional images

    Low-Resolution Vision for Autonomous Mobile Robots

    Get PDF
    The goal of this research is to develop algorithms using low-resolution images to perceive and understand a typical indoor environment and thereby enable a mobile robot to autonomously navigate such an environment. We present techniques for three problems: autonomous exploration, corridor classification, and minimalistic geometric representation of an indoor environment for navigation. First, we present a technique for mobile robot exploration in unknown indoor environments using only a single forward-facing camera. Rather than processing all the data, the method intermittently examines only small 32X24 downsampled grayscale images. We show that for the task of indoor exploration the visual information is highly redundant, allowing successful navigation even using only a small fraction (0.02%) of the available data. The method keeps the robot centered in the corridor by estimating two state parameters: the orientation within the corridor and the distance to the end of the corridor. The orientation is determined by combining the results of five complementary measures, while the estimated distance to the end combines the results of three complementary measures. These measures, which are predominantly information-theoretic, are analyzed independently, and the combined system is tested in several unknown corridor buildings exhibiting a wide variety of appearances, showing the sufficiency of low-resolution visual information for mobile robot exploration. Because the algorithm discards such a large percentage (99.98%) of the information both spatially and temporally, processing occurs at an average of 1000 frames per second, or equivalently takes a small fraction of the CPU. Second, we present an algorithm using image entropy to detect and classify corridor junctions from low resolution images. Because entropy can be used to perceive depth, it can be used to detect an open corridor in a set of images recorded by turning a robot at a junction by 360 degrees. Our algorithm involves detecting peaks from continuously measured entropy values and determining the angular distance between the detected peaks to determine the type of junction that was recorded (either middle, L-junction, T-junction, dead-end, or cross junction). We show that the same algorithm can be used to detect open corridors from both monocular as well as omnidirectional images. Third, we propose a minimalistic corridor representation consisting of the orientation line (center) and the wall-floor boundaries (lateral limit). The representation is extracted from low-resolution images using a novel combination of information theoretic measures and gradient cues. Our study investigates the impact of image resolution upon the accuracy of extracting such a geometry, showing that centerline and wall-floor boundaries can be estimated with reasonable accuracy even in texture-poor environments with low-resolution images. In a database of 7 unique corridor sequences for orientation measurements, less than 2% additional error was observed as the resolution of the image decreased by 99.9%
    • …
    corecore