2,482 research outputs found

    Variability in Surface BRDF at Different Spatial Scales (30 m-500 m) Over a Mixed Agricultural Landscape as Retrieved from Airborne and Satellite Spectral Measurements

    Get PDF
    Over the past decade, the role of multiangle remote sensing has been central to the development of algorithms for the retrieval of global land surface properties including models of the bidirectional reflectance distribution function (BRDF), albedo, land cover/dynamics, burned area extent, as well as other key surface biophysical quantities represented by the anisotropic reflectance characteristics of vegetation. In this study, a new retrieval strategy for fine-to-moderate resolution multiangle observations was developed, based on the operational sequence used to retrieve the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 reflectance and BRDF/albedo products. The algorithm makes use of a semiempirical kernel-driven bidirectional reflectance model to provide estimates of intrinsic albedo (i.e., directional-hemispherical reflectance and bihemispherical reflectance), model parameters describing the BRDF, and extensive quality assurance information. The new retrieval strategy was applied to NASA's Cloud Absorption Radiometer (CAR) data acquired during the 2007 Cloud and Land Surface Interaction Campaign (CLASIC) over the well-instrumented Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site in Oklahoma, USA. For the case analyzed, we obtained approx.1.6 million individual surface bidirectional reflectance factor (BRF) retrievals, from nadir to 75 off-nadir, and at spatial resolutions ranging from 3 m - 500 m. This unique dataset was used to examine the interaction of the spatial and angular characteristics of a mixed agricultural landscape; and provided the basis for detailed assessments of: (1) the use of a priori knowledge in kernel-driven BRDF model inversions; (2) the interaction between surface reflectance anisotropy and instrument spatial resolution; and (3) the uncertain ties that arise when sub-pixel differences in the BRDF are aggregated to a moderate resolution satellite pixel. Results offer empirical evidence concerning the influence of scale and spatial heterogeneity in kernel-driven BRDF models; providing potential new insights into the behavior and characteristics of different surface radiative properties related to land/use cover change and vegetation structure

    Evaluation of the MODIS LAI product using independent lidar-derived LAI: A case study in mixed conifer forest

    Get PDF
    This study presents an alternative assessment of the MODIS LAI product for a 58,000 ha evergreen needleleaf forest located in the western Rocky Mountain range in northern Idaho by using lidar data to model (R2=0.86, RMSE=0.76) and map LAI at higher resolution across a large number of MODIS pixels in their entirety. Moderate resolution (30 m) lidar-based LAI estimates were aggregated to the resolution of the 1-km MODIS LAI product and compared to temporally-coincident MODIS retrievals. Differences in the MODIS and lidar-derived values of LAI were grouped and analyzed by several different factors, including MODIS retrieval algorithm, sun/sensor geometry, and sub-pixel heterogeneity in both vegetation and terrain characteristics. Of particular interest is the disparity in the results when MODIS LAI was analyzed according to algorithm retrieval class. We observed relatively good agreement between lidar-derived and MODIS LAI values for pixels retrieved with the main RT algorithm without saturation for LAI LAI≤4. Moreover, for the entire range of LAI values, considerable overestimation of LAI (relative to lidar-derived LAI) occurred when either the main RT with saturation or back-up algorithm retrievals were used to populate the composite product regardless of sub-pixel vegetation structural complexity or sun/sensor geometry. These results are significant because algorithm retrievals based on the main radiative transfer algorithm with or without saturation are characterized as suitable for validation and subsequent ecosystem modeling, yet the magnitude of difference appears to be specific to retrieval quality class and vegetation structural characteristics

    Intercomparison of MODIS Albedo Retrievals and In Situ Measurements Across the Global FLUXNET Network

    Get PDF
    Surface albedo is a key parameter in the Earth's energy balance since it affects the amount of solar radiation directly absorbed at the planet surface. Its variability in time and space can be globally retrieved through the use of remote sensing products. To evaluate and improve the quality of satellite retrievals, careful intercomparisons with in situ measurements of surface albedo are crucial. For this purpose we compared MODIS albedo retrievals with surface measurements taken at 53 FLUXNET sites that met strict conditions of land cover homogeneity. A good agreement between mean yearly values of satellite retrievals and in situ measurements was found (R(exp 2)= 0.82). The mismatch is correlated to the spatial heterogeneity of surface albedo, stressing the relevance of land cover homogeneity when comparing point to pixel data. When the seasonal patterns of MODIS albedo is considered for different plant functional types, the match with surface observation is extremely good at all forest sites. On the contrary, in non-forest sites satellite retrievals underestimate in situ measurements across the seasonal cycle. The mismatch observed at grasslands and croplands sites is likely due to the extreme fragmentation of these landscapes, as confirmed by geostatistical attributes derived from high resolution scenes

    Generating Global Leaf Area Index from Landsat: Algorithm Formulation and Demonstration

    Get PDF
    This paper summarizes the implementation of a physically based algorithm for the retrieval of vegetation green Leaf Area Index (LAI) from Landsat surface reflectance data. The algorithm is based on the canopy spectral invariants theory and provides a computationally efficient way of parameterizing the Bidirectional Reflectance Factor (BRF) as a function of spatial resolution and wavelength. LAI retrievals from the application of this algorithm to aggregated Landsat surface reflectances are consistent with those of MODIS for homogeneous sites represented by different herbaceous and forest cover types. Example results illustrating the physics and performance of the algorithm suggest three key factors that influence the LAI retrieval process: 1) the atmospheric correction procedures to estimate surface reflectances; 2) the proximity of Landsatobserved surface reflectance and corresponding reflectances as characterized by the model simulation; and 3) the quality of the input land cover type in accurately delineating pure vegetated components as opposed to mixed pixels. Accounting for these factors, a pilot implementation of the LAI retrieval algorithm was demonstrated for the state of California utilizing the Global Land Survey (GLS) 2005 Landsat data archive. In a separate exercise, the performance of the LAI algorithm over California was evaluated by using the short-wave infrared band in addition to the red and near-infrared bands. Results show that the algorithm, while ingesting the short-wave infrared band, has the ability to delineate open canopies with understory effects and may provide useful information compared to a more traditional two-band retrieval. Future research will involve implementation of this algorithm at continental scales and a validation exercise will be performed in evaluating the accuracy of the 30-m LAI products at several field sites

    Remote Sensing of Ecology, Biodiversity and Conservation: A Review from the Perspective of Remote Sensing Specialists

    Get PDF
    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS)

    Upscaling fluxes from towers to regions, continents and global scales using datadriven approaches

    Get PDF
    Quantifying the current carbon cycle of terrestrial ecosystems requires that we translate spatially sparse measurements into consistent, gridded flux estimates at the regional scale. This is particularly challenging in heterogeneous regions such as the northern forests of the United States. We use a network of 17 eddy covariance flux towers deployed across the Upper Midwest region of northern Wisconsin and Michigan and upscale flux observations from towers to the regional scale. This region is densely instrumented and provides a unique test bed for regional upscaling. We develop a simple Diagnostic Carbon Flux Model (DCFM) and use flux observations and a data assimilation approach to estimate the model parameters. We then use the optimized model to produce gridded flux estimates across the region. We find that model parameters vary not only across plant functional types (PFT) but also within a given PFT. Our results show that the parameter estimates from a single site are not representative of the parameter values of a given PFT; cross-site (or joint) optimization using observations from multiple sites encompassing a range of site and climate conditions considerably improves the representativeness and robustness of parameter estimates. Parameter variability within a PFT can result in substantial variability in regional flux estimates. We also find that land cover representation including land cover heterogeneity and the spatial resolution and accuracy of land cover maps can lead to considerable uncertainty in regional flux estimates. In heterogeneous, complex regions, detailed and accurate land cover maps are essential for accurate estimation of regional fluxes

    Upscaling carbon fluxes from towers to the regional scale: Influence of parameter variability and land cover representation on regional flux estimates

    Get PDF
    Quantifying the current carbon cycle of terrestrial ecosystems requires that we translate spatially sparse measurements into consistent, gridded flux estimates at the regional scale. This is particularly challenging in heterogeneous regions such as the northern forests of the United States. We use a network of 17 eddy covariance flux towers deployed across the Upper Midwest region of northern Wisconsin and Michigan and upscale flux observations from towers to the regional scale. This region is densely instrumented and provides a unique test bed for regional upscaling. We develop a simple Diagnostic Carbon Flux Model (DCFM) and use flux observations and a data assimilation approach to estimate the model parameters. We then use the optimized model to produce gridded flux estimates across the region. We find that model parameters vary not only across plant functional types (PFT) but also within a given PFT. Our results show that the parameter estimates from a single site are not representative of the parameter values of a given PFT; cross-site (or joint) optimization using observations from multiple sites encompassing a range of site and climate conditions considerably improves the representativeness and robustness of parameter estimates. Parameter variability within a PFT can result in substantial variability in regional flux estimates. We also find that land cover representation including land cover heterogeneity and the spatial resolution and accuracy of land cover maps can lead to considerable uncertainty in regional flux estimates. In heterogeneous, complex regions, detailed and accurate land cover maps are essential for accurate estimation of regional fluxes

    Assessing change in the Earth's land surface albedo with moderate resolution satellite imagery

    Full text link
    Land surface albedo describes the proportion of incident solar radiant flux that is reflected from the Earth's surface and therefore is a crucial parameter in modeling and monitoring attempts to capture the current climate, hydrological, and biogeochemical cycles and predict future scenarios. Due to the temporal variability and spatial heterogeneity of land surface albedo, remote sensing offers the only realistic method of monitoring albedo on a global scale. While the distribution of bright, highly reflective surfaces (clouds, snow, deserts) govern the vast majority of the fluctuation, variations in the intrinsic surface albedo due to natural and human disturbances such as urban development, fire, pests, harvesting, grazing, flooding, and erosion, as well as the natural seasonal rhythm of vegetation phenology, play a significant role as well. The development of times series of global snow-free and cloud-free albedo from remotely sensed observations over the past decade and a half offers a unique opportunity to monitor and assess the impact of these alterations to the Earth's land surface. By utilizing multiple satellite records from the MODerate-resolution Imaging Spectroradiometer (MODIS), the Multi-angle Imaging Spectroradiometer (MISR) and the Visible Infrared Imaging Radiometer Suite (VIIRS) instruments, and developing innovative spectral conversion coefficients and temporal gap-filling strategies, it has been possible to utilize the strengths of the various sensors to improve the spatial and temporal coverage of global land surface albedo retrievals. The availability of these products is particularly important in tropical regions where cloud cover obscures the forest for significant periods. In the Amazon, field ecologists have noted that some areas of the forest ecosystem respond rapidly with foliage growth at the beginning of the dry season, when sunlight can finally penetrate fully to the surface and have suggested this phenomenon can continue until reductions in water availability (particularly in times of drought) impact the growth cycle. While it has been difficult to capture this variability from individual optical satellite sensors, the temporally gap-filled albedo products developed during this research are used in a case study to monitor the Amazon during the dry season and identify the extent of these regions of foliage growth

    Evapotranspiration estimation using Landsat-8 data with a two-layer framework

    Get PDF
    This work was partially supported by the National Natural Science Foundation of China (41401042), National Key Basic Research Program of China (973 Program) (Grant No. 2015CB452701) and National Natural Science Foundation of China (Grant Nos. 41571019 and 41371043).Peer reviewedproo
    corecore