170,802 research outputs found

    The inhabited environment, infrastructure development and advanced urbanization in China's Yangtze River Delta Region

    Get PDF
    This paper analyzes the relationship among the inhabited environment, infrastructure development and environmental impacts in China's heavily urbanized Yangtze River Delta region. Using primary human environment data for the period 2006-2014, we examine factors affecting the inhabited environment and infrastructure development: urban population, GDP, built-up area, energy consumption, waste emission, transportation, real estate and urban greenery. Then we empirically investigate the impact of advanced urbanization with consideration of cities' differences. Results from this study show that the growth rate of the inhabited environment and infrastructure development is strongly influenced by regional development structure, functional orientations, traffic network and urban size and form. The effect of advanced urbanization is more significant in large and mid-size cities than huge and mega cities. Energy consumption, waste emission and real estate in large and mid-size cities developed at an unprecedented rate with the rapid increase of economy. However, urban development of huge and mega cities gradually tended to be saturated. The transition development in these cities improved the inhabited environment and ecological protection instead of the urban construction simply. To maintain a sustainable advanced urbanization process, policy implications included urban sprawl control polices, ecological development mechanisms and reforming the economic structure for huge and mega cities, and construct major cross-regional infrastructure, enhance the carrying capacity and improvement of energy efficiency and structure for large and mid-size cities

    Data-Adaptive Wavelets and Multi-Scale Singular Spectrum Analysis

    Full text link
    Using multi-scale ideas from wavelet analysis, we extend singular-spectrum analysis (SSA) to the study of nonstationary time series of length NN whose intermittency can give rise to the divergence of their variance. SSA relies on the construction of the lag-covariance matrix C on M lagged copies of the time series over a fixed window width W to detect the regular part of the variability in that window in terms of the minimal number of oscillatory components; here W = M Dt, with Dt the time step. The proposed multi-scale SSA is a local SSA analysis within a moving window of width M <= W <= N. Multi-scale SSA varies W, while keeping a fixed W/M ratio, and uses the eigenvectors of the corresponding lag-covariance matrix C_M as a data-adaptive wavelets; successive eigenvectors of C_M correspond approximately to successive derivatives of the first mother wavelet in standard wavelet analysis. Multi-scale SSA thus solves objectively the delicate problem of optimizing the analyzing wavelet in the time-frequency domain, by a suitable localization of the signal's covariance matrix. We present several examples of application to synthetic signals with fractal or power-law behavior which mimic selected features of certain climatic and geophysical time series. A real application is to the Southern Oscillation index (SOI) monthly values for 1933-1996. Our methodology highlights an abrupt periodicity shift in the SOI near 1960. This abrupt shift between 4 and 3 years supports the Devil's staircase scenario for the El Nino/Southern Oscillation phenomenon.Comment: 24 pages, 19 figure

    Integrated Scenarios of Regional Development in Two Semi-Arid States of North-Eastern Brazil

    Get PDF
    Scenario analysis of the future is an important tool for supporting sustainability-oriented regional planning. To assist regional planning in two federal states in semi-arid North-eastern Brazil, Ceará and Piauí, we developed integrated qualitative¿quantitative scenarios that show potential developments of the agricultural and water resources situation as well as the internal migration until the year 2025. In these states, regional development is negatively influenced by the high seasonality of rainfall and El-Niño-related drought years. Two reference scenarios, 'Coastal Boom and Cash Crops' and 'Decentralisation - Integrated Rural Development' were developed. First, story lines were created and the development of the driving forces was quantified. Then, an integrated model, which includes modules for simulating water availability, water demand, and agricultural production and income, was applied to compute the temporal development of relevant system indicators in each of the 332 municipalities of Ceará and Piauí. These indicators encompass the fraction of the irrigation water demand than can be satisfied, the volume of water which is stored in the reservoirs at the beginning of the dry season, agricultural productivity and production as well as the internal migration among scenario regions. In addition, the impact of certain policy measures was assessed in the context of both reference scenarios. Reference and intervention scenarios were derived by an interdisciplinary group of scientists and were discussed and refined during policy workshops with planning agencies of Ceará

    Condition number analysis and preconditioning of the finite cell method

    Get PDF
    The (Isogeometric) Finite Cell Method - in which a domain is immersed in a structured background mesh - suffers from conditioning problems when cells with small volume fractions occur. In this contribution, we establish a rigorous scaling relation between the condition number of (I)FCM system matrices and the smallest cell volume fraction. Ill-conditioning stems either from basis functions being small on cells with small volume fractions, or from basis functions being nearly linearly dependent on such cells. Based on these two sources of ill-conditioning, an algebraic preconditioning technique is developed, which is referred to as Symmetric Incomplete Permuted Inverse Cholesky (SIPIC). A detailed numerical investigation of the effectivity of the SIPIC preconditioner in improving (I)FCM condition numbers and in improving the convergence speed and accuracy of iterative solvers is presented for the Poisson problem and for two- and three-dimensional problems in linear elasticity, in which Nitche's method is applied in either the normal or tangential direction. The accuracy of the preconditioned iterative solver enables mesh convergence studies of the finite cell method
    • …
    corecore