35 research outputs found

    Almost periodic solutions of retarded SICNNs with functional response on piecewise constant argument

    Get PDF
    We consider a new model for shunting inhibitory cellular neural networks, retarded functional differential equations with piecewise constant argument. The existence and exponential stability of almost periodic solutions are investigated. An illustrative example is provided.Comment: 24 pages, 1 figur

    Системи диференциални уравнения и невронни мрежи със закъснения и импулси

    Get PDF
    Department of Mathematics & Statistics, College of Science, Sultan Qaboos University, Muscat, Sultanate of Oman и ИМИ-БАН, 16.06.2014 г., присъждане на научна степен "доктор на науките" на Валерий Ковачев по научна специалност 01.01.13. математическо моделиране и приложение на математиката. [Covachev Valery Hristov; Ковачев Валерий Христов

    Existence and Exponential Stability of Solutions for Stochastic Cellular Neural Networks with Piecewise Constant Argument

    Get PDF
    By using the concept of differential equations with piecewise constant argument of generalized type, a model of stochastic cellular neural networks with piecewise constant argument is developed. Sufficient conditions are obtained for the existence and uniqueness of the equilibrium point for the addressed neural networks. pth moment exponential stability is investigated by means of Lyapunov functional, stochastic analysis, and inequality technique. The results in this paper improve and generalize some of the previous ones. An example with numerical simulations is given to illustrate our results

    Robustness analysis of Cohen-Grossberg neural network with piecewise constant argument and stochastic disturbances

    Get PDF
    Robustness of neural networks has been a hot topic in recent years. This paper mainly studies the robustness of the global exponential stability of Cohen-Grossberg neural networks with a piecewise constant argument and stochastic disturbances, and discusses the problem of whether the Cohen-Grossberg neural networks can still maintain global exponential stability under the perturbation of the piecewise constant argument and stochastic disturbances. By using stochastic analysis theory and inequality techniques, the interval length of the piecewise constant argument and the upper bound of the noise intensity are derived by solving transcendental equations. In the end, we offer several examples to illustrate the efficacy of the findings

    Stability results for impulsive functional differential equations with infinite delay

    Get PDF
    For a family of diff erential equations with in finitive delay and impulses, we establish conditions for the existence of global solutions and for the global asymptotic and global exponential stabilities of an equilibrium point. The results are used to give stability criteria for a very broad family of impulsive neural network models with both unbounded distributed delays and bounded time-varying discrete delays. Most of the impulsive neural network models with delay recently studied are included in the general framework presented here.Fundação para a Ciência e a Tecnologia (FCT

    Global Exponential Stability of Almost Periodic Solution for Neutral-Type Cohen-Grossberg Shunting Inhibitory Cellular Neural Networks with Distributed Delays and Impulses

    Get PDF
    A kind of neutral-type Cohen-Grossberg shunting inhibitory cellular neural networks with distributed delays and impulses is considered. Firstly, by using the theory of impulsive differential equations and the contracting mapping principle, the existence and uniqueness of the almost periodic solution for the above system are obtained. Secondly, by constructing a suitable Lyapunov functional, the global exponential stability of the unique almost periodic solution is also investigated. The work in this paper improves and extends some results in recent years. As an application, an example and numerical simulations are presented to demonstrate the feasibility and effectiveness of the main results

    Exponential periodic attractor of impulsive Hopfield-type neural network system with piecewise constant argument

    Get PDF
    © 2018, University of Szeged. All rights reserved. In this paper we study a periodic impulsive Hopfield-type neural network system with piecewise constant argument of generalized type. Under general conditions, existence and uniqueness of solutions of such systems are established using ergodicity, Green functions and Gronwall integral inequality. Some sufficient conditions for the existence and stability of periodic solutions are shown and a new stability criterion based on linear approximation is proposed. Examples with constant and non-constant coefficients are simulated, illustrating the effectiveness of the results

    Exponential periodic attractor of impulsive Hopfield-type neural network system with piecewise constant argument

    Get PDF
    In this paper we study a periodic impulsive Hopfield-type neural network system with piecewise constant argument of generalized type. Under general conditions, existence and uniqueness of solutions of such systems are established using ergodicity, Green functions and Gronwall integral inequality. Some sufficient conditions for the existence and stability of periodic solutions are shown and a new stability criterion based on linear approximation is proposed. Examples with constant and nonconstant coefficients are simulated, illustrating the effectiveness of the results
    corecore