5,801 research outputs found

    Quantum Structure in Competing Lizard Communities

    Full text link
    Almost two decades of research on applications of the mathematical formalism of quantum theory as a modeling tool in domains different from the micro-world has given rise to many successful applications in situations related to human behavior and thought, more specifically in cognitive processes of decision-making and the ways concepts are combined into sentences. In this article, we extend this approach to animal behavior, showing that an analysis of an interactive situation involving a mating competition between certain lizard morphs allows to identify a quantum theoretic structure. More in particular, we show that when this lizard competition is analyzed structurally in the light of a compound entity consisting of subentities, the contextuality provided by the presence of an underlying rock-paper-scissors cyclic dynamics leads to a violation of Bell's inequality, which means it is of a non-classical type. We work out an explicit quantum-mechanical representation in Hilbert space for the lizard situation and show that it faithfully models a set of experimental data collected on three throat-colored morphs of a specific lizard species. Furthermore, we investigate the Hilbert space modeling, and show that the states describing the lizard competitions contain entanglement for each one of the considered confrontations of lizards with different competing strategies, which renders it no longer possible to interpret these states of the competing lizards as compositions of states of the individual lizards.Comment: 28 page

    A Planning-based Approach for Music Composition

    Get PDF
    . Automatic music composition is a fascinating field within computational creativity. While different Artificial Intelligence techniques have been used for tackling this task, Planning – an approach for solving complex combinatorial problems which can count on a large number of high-performance systems and an expressive language for describing problems – has never been exploited. In this paper, we propose two different techniques that rely on automated planning for generating musical structures. The structures are then filled from the bottom with “raw” musical materials, and turned into melodies. Music experts evaluated the creative output of the system, acknowledging an overall human-enjoyable trait of the melodies produced, which showed a solid hierarchical structure and a strong musical directionality. The techniques proposed not only have high relevance for the musical domain, but also suggest unexplored ways of using planning for dealing with non-deterministic creative domains

    MU_PSYC : Algorithmic music composition with a music-psychology enriched genetic algorithm

    Get PDF
    Recent advancement of artificial intelligence (AI) techniques have impacted the field of algorithmic music composition, and that has been evidenced by live concert performances wherein the audience reportedly often could not tell whether music was composed by machine or by human. Among the various AI techniques, genetic algorithms dominate the field due to their suitability for both creativity and optimization. Many attempts have been made to incorporate rules from traditional music theory to design and automate genetic algorithms. Another popular approach is to incorporate statistical or mathematical measures of fitness. However, these rules and measures are rarely tested for their validity. This thesis is aimed at addressing the above limitation and hence paving the way to advance the field towards composing human-quality music. The basic idea is to look beyond this constrained set of traditional music rules and statistical/mathematical methods towards a more concrete foundation. We look to a field at the intersection of musicology and psychology, referred to as music-psychology. To demonstrate our proposed approach, we implemented a genetic algorithm exclusively using rules found in music-psychology. An online survey was conducted testing the quality of our algorithm’s output compositions. Moreover, algorithm performance was analyzed by experimental study. The initial results are encouraging and warrant further research. The societal implications of our work and other research in the field are also discussed

    Melody Generation using an Interactive Evolutionary Algorithm

    Full text link
    Music generation with the aid of computers has been recently grabbed the attention of many scientists in the area of artificial intelligence. Deep learning techniques have evolved sequence production methods for this purpose. Yet, a challenging problem is how to evaluate generated music by a machine. In this paper, a methodology has been developed based upon an interactive evolutionary optimization method, with which the scoring of the generated melodies is primarily performed by human expertise, during the training. This music quality scoring is modeled using a Bi-LSTM recurrent neural network. Moreover, the innovative generated melody through a Genetic algorithm will then be evaluated using this Bi-LSTM network. The results of this mechanism clearly show that the proposed method is able to create pleasurable melodies with desired styles and pieces. This method is also quite fast, compared to the state-of-the-art data-oriented evolutionary systems.Comment: 5 pages, 4 images, submitted to MEDPRAI2019 conferenc

    Can Hamilton's rule be violated?

    Get PDF
    • …
    corecore