233 research outputs found

    Construction of Adaptive Multistep Methods for Problems with Discontinuities, Invariants, and Constraints

    Get PDF
    Adaptive multistep methods have been widely used to solve initial value problems. These ordinary differential equations (ODEs) may arise from semi-discretization of time-dependent partial differential equations(PDEs) or may combine with some algebraic equations to represent a differential algebraic equations (DAEs).In this thesis we study the initialization of multistep methods and parametrize some well-known classesof multistep methods to obtain an adaptive formulation of those methods. The thesis is divided into three main parts; (re-)starting a multistep method, a polynomial formulation of strong stability preserving (SSP)multistep methods and parametric formulation of ÎČ−\beta-blocked multistep methods.Depending on the number of steps, a multistep method requires adequate number of initial values tostart the integration. In the view of first part, we look at the available initialization schemes and introduce two family of Runge--Kutta methods derived to start multistep methods with low computational cost and accurate initial values.The proposed starters estimate the error by embedded methods.The second part concerns the variable step-size ÎČ−\beta-blocked multistep methods. We use the polynomial formulation of multistep methods applied on ODEs to parametrize ÎČ−\beta-blocked multistep methods forthe solution of index-2 Euler-Lagrange DAEs. The performance of the adaptive formulation is verified by some numerical experiments. For the last part, we apply a polynomial formulation of multistep methods to formulate SSP multistep methods that are applied for the solution of semi-discretized hyperbolic PDEs. This formulationallows time adaptivity by construction

    Calibrated Adaptive Probabilistic ODE Solvers

    Full text link
    Probabilistic solvers for ordinary differential equations assign a posterior measure to the solution of an initial value problem. The joint covariance of this distribution provides an estimate of the (global) approximation error. The contraction rate of this error estimate as a function of the solver's step size identifies it as a well-calibrated worst-case error, but its explicit numerical value for a certain step size is not automatically a good estimate of the explicit error. Addressing this issue, we introduce, discuss, and assess several probabilistically motivated ways to calibrate the uncertainty estimate. Numerical experiments demonstrate that these calibration methods interact efficiently with adaptive step-size selection, resulting in descriptive, and efficiently computable posteriors. We demonstrate the efficiency of the methodology by benchmarking against the classic, widely used Dormand-Prince 4/5 Runge-Kutta method.Comment: 17 pages, 10 figures

    Convergence Rates of Gaussian ODE Filters

    Get PDF
    A recently-introduced class of probabilistic (uncertainty-aware) solvers for ordinary differential equations (ODEs) applies Gaussian (Kalman) filtering to initial value problems. These methods model the true solution xx and its first qq derivatives \emph{a priori} as a Gauss--Markov process X\boldsymbol{X}, which is then iteratively conditioned on information about x˙\dot{x}. This article establishes worst-case local convergence rates of order q+1q+1 for a wide range of versions of this Gaussian ODE filter, as well as global convergence rates of order qq in the case of q=1q=1 and an integrated Brownian motion prior, and analyses how inaccurate information on x˙\dot{x} coming from approximate evaluations of ff affects these rates. Moreover, we show that, in the globally convergent case, the posterior credible intervals are well calibrated in the sense that they globally contract at the same rate as the truncation error. We illustrate these theoretical results by numerical experiments which might indicate their generalizability to q∈{2,3,
 }q \in \{2,3,\dots\}.Comment: 26 pages, 5 figure

    Construction of Nordsieck Second Derivative General Linear Methods with Inherent Quadratic Stability

    Get PDF
    This paper describes the construction of second derivative general linear methods in Nordsieck form with stability properties determined by quadratic stability functions. This is achieved by imposing the so–called inherent quadratic stability conditions. After satisfying order and inherent quadratic stability conditions, the remaining free parameters are used to find the methods with L–stable property. Examples of methods with p = q = s = r − 1 up to order four are given

    Approaches for rule discovery in a learning classifier system

    Get PDF
    To fill the increasing demand for explanations of decisions made by automated prediction systems, machine learning (ML) techniques that produce inherently transparent models are directly suited. Learning Classifier Systems (LCSs), a family of rule-based learners, produce transparent models by design. However, the usefulness of such models, both for predictions and analyses, heavily depends on the placement and selection of rules (combined constituting the ML task of model selection). In this paper, we investigate a variety of techniques to efficiently place good rules within the search space based on their local prediction errors as well as their generality. This investigation is done within a specific LCS, named SupRB, where the placement of rules and the selection of good subsets of rules are strictly separated in contrast to other LCSs where these tasks sometimes blend. We compare a Random Search, (1,λ)-ES and three Novelty Search variants. We find that there is a definitive need to guide the search based on some sensible criteria, i.e. error and generality, rather than just placing rules randomly and selecting better performing ones but also find that Novelty Search variants do not beat the easier to understand (1,λ)-ES

    Probabilistic Ordinary Differential Equation Solvers - Theory and Applications

    Get PDF
    Ordinary differential equations are ubiquitous in science and engineering, as they provide mathematical models for many physical processes. However, most practical purposes require the temporal evolution of a particular solution. Many relevant ordinary differential equations are known to lack closed-form solutions in terms of simple analytic functions. Thus, users rely on numerical algorithms to compute discrete approximations. Numerical methods replace the intractable, and thus inaccessible, solution by an approximating model with known computational strategies. This is akin to a process in statistics where an unknown true relationship is modeled with access to instances of said relationship. One branch of statistics, Bayesian modeling, expresses degrees of uncertainty with probability distributions. In recent years, this idea has gained traction for the design and study of numerical algorithms which established probabilistic numerics as a research field in its own right. The theory part of this thesis is concerned with bridging the gap between classical numerical methods for ordinary differential equations and probabilistic numerics. To this end, an algorithm is presented based on Gaussian processes, a general and versatile model for Bayesian regression. This algorithm is compared to two standard frameworks for the solution of initial value problems. It is shown that the maximum a-posteriori estimator of certain Gaussian process regressors coincide with certain multistep formulae. Furthermore, a particular initialization scheme based on an improper prior model coincides with a Runge-Kutta method for the first discretization step. This analysis provides a higher-order probabilistic numerical algorithm for initial value problems. Based on the probabilistic description, an estimator of the local integration error is presented, which is used in a step size adaptation scheme. The completed algorithm is evaluated on a benchmark on initial value problems, confirming empirically the theoretically predicted error rates and displaying particularly efficient performance on domains with low accuracy requirements. To establish the practical benefit of the probabilistic solution, a probabilistic boundary value problem solver is applied to a medical imaging problem. In tractography, diffusion-weighted magnetic resonance imaging data is used to infer connectivity of neural fibers. The first application of the probabilistic solver shows how the quantification of the discretization error can be used in subsequent estimation of fiber density. The second application additionally incorporates the measurement noise of the imaging data into the tract estimation model. These two extensions of the shortest-path tractography method give more faithful data, modeling and algorithmic uncertainty representations in neural connectivity studies.Gewöhnliche Differentialgleichungen sind allgegenwĂ€rtig in Wissenschaft und Technik, da sie die mathematische Beschreibung vieler physikalischen VorgĂ€nge sind. Jedoch benötigt ein Großteil der praktischen Anwendungen die zeitliche Entwicklung einer bestimmten Lösung. Es ist bekannt, dass viele relevante gewöhnliche Differentialgleichungen keine geschlossene Lösung als AusdrĂŒcke einfacher analytischer Funktion besitzen. Daher verlassen sich Anwender auf numerische Algorithmen, um diskrete AnnĂ€herungen zu berechnen. Numerische Methoden ersetzen die unauswertbare, und daher unzugĂ€ngliche, Lösung durch eine AnnĂ€herung mit bekannten Rechenverfahren. Dies Ă€hnelt einem Vorgang in der Statistik, wobei ein unbekanntes wahres VerhĂ€ltnis mittels Zugang zu Beispielen modeliert wird. Eine Unterdisziplin der Statistik, Bayes’sche Modellierung, stellt graduelle Unsicherheit mittels Wahrscheinlichkeitsverteilungen dar. In den letzten Jahren hat diese Idee an Zugkraft fĂŒr die Konstruktion und Analyse von numerischen Algorithmen gewonnen, was zur Etablierung von probabilistischer Numerik als eigenstĂ€ndiges Forschungsgebiet fĂŒhrte. Der Theorieteil dieser Dissertation schlĂ€gt eine BrĂŒcke zwischen herkömmlichen numerischen Verfahren zur Lösung gewöhnlicher Differentialgleichungen und probabilistischer Numerik. Ein auf Gauß’schen Prozessen basierender Algorithmus wird vorgestellt, welche ein generelles und vielseitiges Modell der Bayesschen Regression sind. Dieser Algorithmus wird verglichen mit zwei StandardansĂ€tzen fĂŒr die Lösung von Anfangswertproblemen. Es wird gezeigt, dass der Maximum-a-posteriori-SchĂ€tzer bestimmter Gaußprozess-Regressoren ĂŒbereinstimmt mit bestimmten Mehrschrittverfahren. Weiterhin stimmt ein besonderes Initialisierungsverfahren basierend auf einer uneigentlichen A-priori-Wahrscheinlichkeit ĂŒberein mit einer Runge-Kutta Methode im ersten Rechenschritt. Diese Analyse fĂŒhrt zu einer probabilistisch-numerischen Methode höherer Ordnung zur Lösung von Anfangswertproblemen. Basierend auf der probabilistischen Beschreibung wird ein SchĂ€tzer des lokalen Integrationfehlers prĂ€sentiert, welcher in einem Schrittweitensteuerungsverfahren verwendet wird. Der vollstĂ€ndige Algorithmus wird auf einem Satz standardisierter Anfangswertprobleme ausgewertet, um empirisch den von der Theorie vorhergesagten Fehler zu bestĂ€tigen. Der Test weist dem Verfahren einen besonders effizienten Rechenaufwand im Bereich der niedrigen Genauigkeitsanforderungen aus. Um den praktischen Nutzen der probabilistischen Lösung nachzuweisen, wird ein probabilistischer Löser fĂŒr Randwertprobleme auf eine Fragestellung der medizinischen Bildgebung angewandt. In der Traktografie werden die Daten der diffusionsgewichteten Magnetresonanzbildgebung verwendet, um die KonnektivitĂ€t neuronaler Fasern zu bestimmen. Die erste Anwendung des probabilistische Lösers demonstriert, wie die Quantifizierung des Diskretisierungsfehlers in einer nachgeschalteten SchĂ€tzung der Faserdichte verwendet werden kann. Die zweite Anwendung integriert zusĂ€tzlich das Messrauschen der Bildgebungsdaten in das StrangschĂ€tzungsmodell. Diese beiden Erweiterungen der KĂŒrzesten-Pfad-Traktografie reprĂ€sentieren die Daten-, Modellierungs- und algorithmische Unsicherheit abbildungstreuer in neuronalen KonnektivitĂ€tsstudien

    Investigating the Impact of Independent Rule Fitnesses in a Learning Classifier System

    Get PDF
    Achieving at least some level of explainability requires complex analyses for many machine learning systems, such as common black-box models. We recently proposed a new rule-based learning system, SupRB, to construct compact, interpretable and transparent models by utilizing separate optimizers for the model selection tasks concerning rule discovery and rule set composition.This allows users to specifically tailor their model structure to fulfil use-case specific explainability requirements. From an optimization perspective, this allows us to define clearer goals and we find that -- in contrast to many state of the art systems -- this allows us to keep rule fitnesses independent. In this paper we investigate this system's performance thoroughly on a set of regression problems and compare it against XCSF, a prominent rule-based learning system. We find the overall results of SupRB's evaluation comparable to XCSF's while allowing easier control of model structure and showing a substantially smaller sensitivity to random seeds and data splits. This increased control can aid in subsequently providing explanations for both training and final structure of the model.Comment: arXiv admin note: substantial text overlap with arXiv:2202.0167
    • 

    corecore