3,727 research outputs found

    NOMA-based Energy-Efficient Wireless Powered Communications

    Full text link
    In this paper, we study the performance of non-orthogonal multiple access (NOMA) schemes in wireless powered communication networks (WPCN) focusing on the system energy efficiency (EE). We consider multiple energy harvesting user equipments (UEs) that operate based on harvest-then-transmit protocol. The uplink information transfer is carried out by using power-domain multiplexing, and the receiver decodes each UE's data in such a way that the UE with the best channel gain is decoded without interference. In order to determine optimal resource allocation strategies, we formulate optimization problems considering two models, namely half-duplex and asynchronous transmission, based on how downlink and uplink operations are coordinated. In both cases, we have concave-linear fractional problems, and hence Dinkelbach's method can be applied to obtain the globally optimal solutions. Thus, we first derive analytical expressions for the harvesting interval, and then we provide an algorithm to describe the complete procedure. Furthermore, we incorporate delay-limited sources and investigate the impact of statistical queuing constraints on the energy-efficient allocation of operating intervals. We formulate an optimization problem that maximizes the system effective-EE while UEs are applying NOMA scheme for uplink information transfer. Since the problem satisfies pseudo-concavity, we provide an iterative algorithm using bisection method to determine the unique solution. In the numerical results, we observe that broadcasting at higher power level is more energy efficient for WPCN with uplink NOMA. Additionally, exponential decay QoS parameter has considerable impact on the optimal solution, and in the presence of strict constraints, more time is allocated for downlink interval under half-duplex operation with uplink TDMA mode.Comment: 31 pages, 12 figures, to appear on IEEE Transactions on Green Communications and Networkin

    Potential Games for Energy-Efficient Resource Allocation in Multipoint-to-Multipoint CDMA Wireless Data Networks

    Full text link
    The problem of noncooperative resource allocation in a multipoint-to-multipoint cellular network is considered in this paper. The considered scenario is general enough to represent several key instances of modern wireless networks such as a multicellular network, a peer-to-peer network (interference channel), and a wireless network equipped with femtocells. In particular, the problem of joint transmit waveforms adaptation, linear receiver design, and transmit power control is examined. Several utility functions to be maximized are considered, and, among them, we cite the received SINR, and the transmitter energy efficiency, which is measured in bit/Joule, and represents the number of successfully delivered bits for each energy unit used for transmission. Resorting to the theory of potential games, noncooperative games admitting Nash equilibria in multipoint-to-multipoint cellular networks regardless of the channel coefficient realizations are designed. Computer simulations confirm that the considered games are convergent, and show the huge benefits that resource allocation schemes can bring to the performance of wireless data networks.Comment: Submitted to Physical Communication, ELSEVIE

    Non-cooperative games for spreading code optimization, power control and receiver design in wireless data networks

    Full text link
    This paper focuses on the issue of energy efficiency in wireless data networks through a game theoretic approach. The case considered is that in which each user is allowed to vary its transmit power, spreading code, and uplink receiver in order to maximize its own utility, which is here defined as the ratio of data throughput to transmit power. In particular, the case in which linear multiuser detectors are employed at the receiver is treated first, and, then, the more challenging case in which non-linear decision feedback multiuser receivers are adopted is addressed. It is shown that, for both receivers, the problem at hand of utility maximization can be regarded as a non-cooperative game, and it is proved that a unique Nash equilibrium point exists. Simulation results show that significant performance gains can be obtained through both non-linear processing and spreading code optimization; in particular, for systems with a number of users not larger than the processing gain, remarkable gains come from spreading code optimization, while, for overloaded systems, the largest gainscome from the use of non-linear processing. In every case, however, the non-cooperative games proposed here are shown to outperform competing alternatives.Comment: appeared in the Proceedings of the 13th European Wireless Conference, Paris (France), April 200

    A Survey on MIMO Transmission with Discrete Input Signals: Technical Challenges, Advances, and Future Trends

    Full text link
    Multiple antennas have been exploited for spatial multiplexing and diversity transmission in a wide range of communication applications. However, most of the advances in the design of high speed wireless multiple-input multiple output (MIMO) systems are based on information-theoretic principles that demonstrate how to efficiently transmit signals conforming to Gaussian distribution. Although the Gaussian signal is capacity-achieving, signals conforming to discrete constellations are transmitted in practical communication systems. As a result, this paper is motivated to provide a comprehensive overview on MIMO transmission design with discrete input signals. We first summarize the existing fundamental results for MIMO systems with discrete input signals. Then, focusing on the basic point-to-point MIMO systems, we examine transmission schemes based on three most important criteria for communication systems: the mutual information driven designs, the mean square error driven designs, and the diversity driven designs. Particularly, a unified framework which designs low complexity transmission schemes applicable to massive MIMO systems in upcoming 5G wireless networks is provided in the first time. Moreover, adaptive transmission designs which switch among these criteria based on the channel conditions to formulate the best transmission strategy are discussed. Then, we provide a survey of the transmission designs with discrete input signals for multiuser MIMO scenarios, including MIMO uplink transmission, MIMO downlink transmission, MIMO interference channel, and MIMO wiretap channel. Additionally, we discuss the transmission designs with discrete input signals for other systems using MIMO technology. Finally, technical challenges which remain unresolved at the time of writing are summarized and the future trends of transmission designs with discrete input signals are addressed.Comment: 110 pages, 512 references, submit to Proceedings of the IEE

    Towards Optimal Resource Allocation in Wireless Powered Communication Networks with Non-Orthogonal Multiple Access

    Full text link
    The optimal allocation of time and energy resources is characterized in a Wireless Powered Communication Network (WPCN) with non-Orthogonal Multiple Access (NOMA). We consider two different formulations; in the first one (max-sum), the sum-throughput of all users is maximized. In the second one (max-min), and targeting fairness among users, we consider maximizing the min-throughput of all users. Under the above two formulations, two NOMA decoding schemes are studied, namely, low complexity decoding (LCD) and successive interference cancellation decoding (SICD). Due to the non-convexity of three of the studied optimization problems, we consider an approximation approach, in which the non-convex optimization problem is approximated by a convex optimization problem, which satisfies all the constraints of the original problem. The approximated convex optimization problem can then be solved iteratively. The results show a trade-off between maximizing the sum throughout and achieving fairness through maximizing the minimum throughput

    Energy Efficient Power and Channel Allocation in Underlay Device to Multi Device Communications

    Full text link
    In this paper, we optimize the energy efficiency (bits/s/Hz/J) of device-to-multi-device (D2MD) wireless communications. While the device-to-device scenario has been extensively studied to improve the spectral efficiency in cellular networks, the use of multicast communications opens the possibility of reusing the spectrum resources also inside the groups. The optimization problem is formulated as a mixed integer non-linear joint optimization for the power control and allocation of resource blocks (RBs) to each group. Our model explicitly considers resource sharing by letting co-channel transmission over a RB (up to a maximum of r transmitters) and/or transmission through s different channels in each group. We use an iterative decomposition approach, using first matching theory to find a stable even if sub-optimal channel allocation, to then optimize the transmission power vectors in each group via fractional programming. Additionally, within this framework, both the network energy efficiency and the max-min individual energy efficiency are investigated. We characterize numerically the energy-efficient capacity region, and our results show that the normalized energy efficiency is nearly optimal (above 90 percent of the network capacity) for a wide range of minimum-rate constraints. This performance is better than that of other matching-based techniques previously proposed

    Energy-Efficient Joint User-RB Association and Power Allocation for Uplink Hybrid NOMA-OMA

    Full text link
    In this paper, energy efficient resource allocation is considered for an uplink hybrid system, where non-orthogonal multiple access (NOMA) is integrated into orthogonal multiple access (OMA). To ensure the quality of service for the users, a minimum rate requirement is pre-defined for each user. We formulate an energy efficiency (EE) maximization problem by jointly optimizing the user clustering, channel assignment and power allocation. To address this hard problem, a many-to-one bipartite graph is first constructed considering the users and resource blocks (RBs) as the two sets of nodes. Based on swap matching, a joint user-RB association and power allocation scheme is proposed, which converges within a limited number of iterations. Moreover, for the power allocation under a given user-RB association, we first derive the feasibility condition. If feasible, a low-complexity algorithm is proposed, which obtains optimal EE under any successive interference cancellation (SIC) order and an arbitrary number of users. In addition, for the special case of two users per cluster, analytical solutions are provided for the two SIC orders, respectively. These solutions shed light on how the power is allocated for each user to maximize the EE. Numerical results are presented, which show that the proposed joint user-RB association and power allocation algorithm outperforms other hybrid multiple access based and OMA-based schemes.Comment: Non-orthogonal multiple access (NOMA), energy efficiency (EE), power allocation (PA), uplink transmissio

    Wireless Powered Communications with Non-Orthogonal Multiple Access

    Full text link
    We study a wireless-powered uplink communication system with non-orthogonal multiple access (NOMA), consisting of one base station and multiple energy harvesting users. More specifically, we focus on the individual data rate optimization and fairness improvement and we show that the formulated problems can be optimally and efficiently solved by either linear programming or convex optimization. In the provided analysis, two types of decoding order strategies are considered, namely fixed decoding order and time- sharing. Furthermore, we propose an efficient greedy algorithm, which is suitable for the practical implementation of the time-sharing strategy. Simulation results illustrate that the proposed scheme outperforms the baseline orthogonal multiple access scheme. More specifically, it is shown that NOMA offers a considerable improvement in throughput, fairness, and energy efficiency. Also, the dependence among system throughput, minimum individual data rate, and harvested energy is revealed, as well as an interesting trade-off between rates and energy efficiency. Finally, the convergence speed of the proposed greedy algorithm is evaluated, and it is shown that the required number of iterations is linear with respect to the number of users.Comment: Submitted to IEEE Transactions on Wireless Communication

    Robust Radio Resource Allocation in MISO-SCMA Assisted C-RAN in 5G Networks

    Full text link
    In this paper, by considering multiple slices, a downlink transmission of a sparse code multiple access (SCMA) based cloud-radio access network (C-RAN) is investigated. In this regard, by supposing multiple input and single output (MISO) transmission technology, a novel robust radio resource allocation is proposed where considering uncertain channel state information (CSI), the worst case approach is applied. The main goal of the proposed radio resource allocation is to, maximize the system sum rate with maximum available power at radio remote head (RRH), minimum rate requirement of each slice, maximum frounthaul capacity of each RRH, user association, and SCMA constraints. To solve the proposed optimization problem in an efficient manner, an iterative method is deployed where in each iteration, beamforming and joint codebook allocation and user association subproblem are solved separately. By introducing some auxiliary variables, the joint codebook allocation and user association subproblem is transformed into an integer linear programming, and to solve the beamforming optimization problem, minorization-maximization algorithm (MMA) is applied. Via numerical results, the performance of the proposed system model versus different system parameters and for different channel models are investigated.Comment: 11 pages, 8 figure

    Secure Communications in NOMA System: Subcarrier Assignment and Power Allocation

    Full text link
    Secure communication is a promising technology for wireless networks because it ensures secure transmission of information. In this paper, we investigate the joint subcarrier (SC) assignment and power allocation problem for non-orthogonal multiple access (NOMA) amplify-and-forward two-way relay wireless networks, in the presence of eavesdroppers. By exploiting cooperative jamming (CJ) to enhance the security of the communication link, we aim to maximize the achievable secrecy energy efficiency by jointly designing the SC assignment, user pair scheduling and power allocation. Assuming the perfect knowledge of the channel state information (CSI) at the relay station, we propose a low-complexity subcarrier assignment scheme (SCAS-1), which is equivalent to many-to-many matching games, and then SCAS-2 is formulated as a secrecy energy efficiency maximization problem. The secure power allocation problem is modeled as a convex geometric programming problem, and then solved by interior point methods. Simulation results demonstrate that the effectiveness of the proposed SSPA algorithms under scenarios of using and not using CJ, respectively
    • …
    corecore