11,106 research outputs found

    Causal graph dynamics

    Full text link
    We extend the theory of Cellular Automata to arbitrary, time-varying graphs. In other words we formalize, and prove theorems about, the intuitive idea of a labelled graph which evolves in time - but under the natural constraint that information can only ever be transmitted at a bounded speed, with respect to the distance given by the graph. The notion of translation-invariance is also generalized. The definition we provide for these "causal graph dynamics" is simple and axiomatic. The theorems we provide also show that it is robust. For instance, causal graph dynamics are stable under composition and under restriction to radius one. In the finite case some fundamental facts of Cellular Automata theory carry through: causal graph dynamics admit a characterization as continuous functions, and they are stable under inversion. The provided examples suggest a wide range of applications of this mathematical object, from complex systems science to theoretical physics. KEYWORDS: Dynamical networks, Boolean networks, Generative networks automata, Cayley cellular automata, Graph Automata, Graph rewriting automata, Parallel graph transformations, Amalgamated graph transformations, Time-varying graphs, Regge calculus, Local, No-signalling.Comment: 25 pages, 9 figures, LaTeX, v2: Minor presentation improvements, v3: Typos corrected, figure adde

    Intrinsic Simulations between Stochastic Cellular Automata

    Full text link
    The paper proposes a simple formalism for dealing with deterministic, non-deterministic and stochastic cellular automata in a unifying and composable manner. Armed with this formalism, we extend the notion of intrinsic simulation between deterministic cellular automata, to the non-deterministic and stochastic settings. We then provide explicit tools to prove or disprove the existence of such a simulation between two stochastic cellular automata, even though the intrinsic simulation relation is shown to be undecidable in dimension two and higher. The key result behind this is the caracterization of equality of stochastic global maps by the existence of a coupling between the random sources. We then prove that there is a universal non-deterministic cellular automaton, but no universal stochastic cellular automaton. Yet we provide stochastic cellular automata achieving optimal partial universality.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    Quantum Cellular Automata

    Full text link
    Quantum cellular automata (QCA) are reviewed, including early and more recent proposals. QCA are a generalization of (classical) cellular automata (CA) and in particular of reversible CA. The latter are reviewed shortly. An overview is given over early attempts by various authors to define one-dimensional QCA. These turned out to have serious shortcomings which are discussed as well. Various proposals subsequently put forward by a number of authors for a general definition of one- and higher-dimensional QCA are reviewed and their properties such as universality and reversibility are discussed.Comment: 12 pages, 3 figures. To appear in the Springer Encyclopedia of Complexity and Systems Scienc

    When--and how--can a cellular automaton be rewritten as a lattice gas?

    Get PDF
    Both cellular automata (CA) and lattice-gas automata (LG) provide finite algorithmic presentations for certain classes of infinite dynamical systems studied by symbolic dynamics; it is customary to use the term `cellular automaton' or `lattice gas' for the dynamic system itself as well as for its presentation. The two kinds of presentation share many traits but also display profound differences on issues ranging from decidability to modeling convenience and physical implementability. Following a conjecture by Toffoli and Margolus, it had been proved by Kari (and by Durand--Lose for more than two dimensions) that any invertible CA can be rewritten as an LG (with a possibly much more complex ``unit cell''). But until now it was not known whether this is possible in general for noninvertible CA--which comprise ``almost all'' CA and represent the bulk of examples in theory and applications. Even circumstantial evidence--whether in favor or against--was lacking. Here, for noninvertible CA, (a) we prove that an LG presentation is out of the question for the vanishingly small class of surjective ones. We then turn our attention to all the rest--noninvertible and nonsurjective--which comprise all the typical ones, including Conway's `Game of Life'. For these (b) we prove by explicit construction that all the one-dimensional ones are representable as LG, and (c) we present and motivate the conjecture that this result extends to any number of dimensions. The tradeoff between dissipation rate and structural complexity implied by the above results have compelling implications for the thermodynamics of computation at a microscopic scale.Comment: 16 page

    Complex dynamics of elementary cellular automata emerging from chaotic rules

    Get PDF
    We show techniques of analyzing complex dynamics of cellular automata (CA) with chaotic behaviour. CA are well known computational substrates for studying emergent collective behaviour, complexity, randomness and interaction between order and chaotic systems. A number of attempts have been made to classify CA functions on their space-time dynamics and to predict behaviour of any given function. Examples include mechanical computation, \lambda{} and Z-parameters, mean field theory, differential equations and number conserving features. We aim to classify CA based on their behaviour when they act in a historical mode, i.e. as CA with memory. We demonstrate that cell-state transition rules enriched with memory quickly transform a chaotic system converging to a complex global behaviour from almost any initial condition. Thus just in few steps we can select chaotic rules without exhaustive computational experiments or recurring to additional parameters. We provide analysis of well-known chaotic functions in one-dimensional CA, and decompose dynamics of the automata using majority memory exploring glider dynamics and reactions

    Complex dynamics emerging in Rule 30 with majority memory

    Get PDF
    In cellular automata with memory, the unchanged maps of the conventional cellular automata are applied to cells endowed with memory of their past states in some specified interval. We implement Rule 30 automata with a majority memory and show that using the memory function we can transform quasi-chaotic dynamics of classical Rule 30 into domains of travelling structures with predictable behaviour. We analyse morphological complexity of the automata and classify dynamics of gliders (particles, self-localizations) in memory-enriched Rule 30. We provide formal ways of encoding and classifying glider dynamics using de Bruijn diagrams, soliton reactions and quasi-chemical representations

    On Factor Universality in Symbolic Spaces

    Get PDF
    The study of factoring relations between subshifts or cellular automata is central in symbolic dynamics. Besides, a notion of intrinsic universality for cellular automata based on an operation of rescaling is receiving more and more attention in the literature. In this paper, we propose to study the factoring relation up to rescalings, and ask for the existence of universal objects for that simulation relation. In classical simulations of a system S by a system T, the simulation takes place on a specific subset of configurations of T depending on S (this is the case for intrinsic universality). Our setting, however, asks for every configurations of T to have a meaningful interpretation in S. Despite this strong requirement, we show that there exists a cellular automaton able to simulate any other in a large class containing arbitrarily complex ones. We also consider the case of subshifts and, using arguments from recursion theory, we give negative results about the existence of universal objects in some classes
    corecore