219 research outputs found

    Global Convergence of a Grassmannian Gradient Descent Algorithm for Subspace Estimation

    Full text link
    It has been observed in a variety of contexts that gradient descent methods have great success in solving low-rank matrix factorization problems, despite the relevant problem formulation being non-convex. We tackle a particular instance of this scenario, where we seek the dd-dimensional subspace spanned by a streaming data matrix. We apply the natural first order incremental gradient descent method, constraining the gradient method to the Grassmannian. In this paper, we propose an adaptive step size scheme that is greedy for the noiseless case, that maximizes the improvement of our metric of convergence at each data index tt, and yields an expected improvement for the noisy case. We show that, with noise-free data, this method converges from any random initialization to the global minimum of the problem. For noisy data, we provide the expected convergence rate of the proposed algorithm per iteration.Comment: 23 pages, 10 figure

    Numerical algorithms on the affine Grassmannian

    Full text link
    The affine Grassmannian is a noncompact smooth manifold that parameterizes all affine subspaces of a fixed dimension. It is a natural generalization of Euclidean space, points being zero-dimensional affine subspaces. We will realize the affine Grassmannian as a matrix manifold and extend Riemannian optimization algorithms including steepest descent, Newton method, and conjugate gradient, to real-valued functions on the affine Grassmannian. Like their counterparts for the Grassmannian, these algorithms are in the style of Edelman--Arias--Smith --- they rely only on standard numerical linear algebra and are readily computable.Comment: 18 pages, 3 figure

    A Well-Tempered Landscape for Non-convex Robust Subspace Recovery

    Full text link
    We present a mathematical analysis of a non-convex energy landscape for robust subspace recovery. We prove that an underlying subspace is the only stationary point and local minimizer in a specified neighborhood under a deterministic condition on a dataset. If the deterministic condition is satisfied, we further show that a geodesic gradient descent method over the Grassmannian manifold can exactly recover the underlying subspace when the method is properly initialized. Proper initialization by principal component analysis is guaranteed with a simple deterministic condition. Under slightly stronger assumptions, the gradient descent method with a piecewise constant step-size scheme achieves linear convergence. The practicality of the deterministic condition is demonstrated on some statistical models of data, and the method achieves almost state-of-the-art recovery guarantees on the Haystack Model for different regimes of sample size and ambient dimension. In particular, when the ambient dimension is fixed and the sample size is large enough, we show that our gradient method can exactly recover the underlying subspace for any fixed fraction of outliers (less than 1).Comment: 58 pages, 6 figures, 1 tabl

    Online Supervised Subspace Tracking

    Full text link
    We present a framework for supervised subspace tracking, when there are two time series xtx_t and yty_t, one being the high-dimensional predictors and the other being the response variables and the subspace tracking needs to take into consideration of both sequences. It extends the classic online subspace tracking work which can be viewed as tracking of xtx_t only. Our online sufficient dimensionality reduction (OSDR) is a meta-algorithm that can be applied to various cases including linear regression, logistic regression, multiple linear regression, multinomial logistic regression, support vector machine, the random dot product model and the multi-scale union-of-subspace model. OSDR reduces data-dimensionality on-the-fly with low-computational complexity and it can also handle missing data and dynamic data. OSDR uses an alternating minimization scheme and updates the subspace via gradient descent on the Grassmannian manifold. The subspace update can be performed efficiently utilizing the fact that the Grassmannian gradient with respect to the subspace in many settings is rank-one (or low-rank in certain cases). The optimization problem for OSDR is non-convex and hard to analyze in general; we provide convergence analysis of OSDR in a simple linear regression setting. The good performance of OSDR compared with the conventional unsupervised subspace tracking are demonstrated via numerical examples on simulated and real data.Comment: Submitted for journal publicatio

    Decomposition into Low-rank plus Additive Matrices for Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset

    Full text link
    Recent research on problem formulations based on decomposition into low-rank plus sparse matrices shows a suitable framework to separate moving objects from the background. The most representative problem formulation is the Robust Principal Component Analysis (RPCA) solved via Principal Component Pursuit (PCP) which decomposes a data matrix in a low-rank matrix and a sparse matrix. However, similar robust implicit or explicit decompositions can be made in the following problem formulations: Robust Non-negative Matrix Factorization (RNMF), Robust Matrix Completion (RMC), Robust Subspace Recovery (RSR), Robust Subspace Tracking (RST) and Robust Low-Rank Minimization (RLRM). The main goal of these similar problem formulations is to obtain explicitly or implicitly a decomposition into low-rank matrix plus additive matrices. In this context, this work aims to initiate a rigorous and comprehensive review of the similar problem formulations in robust subspace learning and tracking based on decomposition into low-rank plus additive matrices for testing and ranking existing algorithms for background/foreground separation. For this, we first provide a preliminary review of the recent developments in the different problem formulations which allows us to define a unified view that we called Decomposition into Low-rank plus Additive Matrices (DLAM). Then, we examine carefully each method in each robust subspace learning/tracking frameworks with their decomposition, their loss functions, their optimization problem and their solvers. Furthermore, we investigate if incremental algorithms and real-time implementations can be achieved for background/foreground separation. Finally, experimental results on a large-scale dataset called Background Models Challenge (BMC 2012) show the comparative performance of 32 different robust subspace learning/tracking methods.Comment: 121 pages, 5 figures, submitted to Computer Science Review. arXiv admin note: text overlap with arXiv:1312.7167, arXiv:1109.6297, arXiv:1207.3438, arXiv:1105.2126, arXiv:1404.7592, arXiv:1210.0805, arXiv:1403.8067 by other authors, Computer Science Review, November 201

    Low-Rank Modeling and Its Applications in Image Analysis

    Full text link
    Low-rank modeling generally refers to a class of methods that solve problems by representing variables of interest as low-rank matrices. It has achieved great success in various fields including computer vision, data mining, signal processing and bioinformatics. Recently, much progress has been made in theories, algorithms and applications of low-rank modeling, such as exact low-rank matrix recovery via convex programming and matrix completion applied to collaborative filtering. These advances have brought more and more attentions to this topic. In this paper, we review the recent advance of low-rank modeling, the state-of-the-art algorithms, and related applications in image analysis. We first give an overview to the concept of low-rank modeling and challenging problems in this area. Then, we summarize the models and algorithms for low-rank matrix recovery and illustrate their advantages and limitations with numerical experiments. Next, we introduce a few applications of low-rank modeling in the context of image analysis. Finally, we conclude this paper with some discussions.Comment: To appear in ACM Computing Survey

    Robust Subspace Recovery with Adversarial Outliers

    Full text link
    We study the problem of robust subspace recovery (RSR) in the presence of adversarial outliers. That is, we seek a subspace that contains a large portion of a dataset when some fraction of the data points are arbitrarily corrupted. We first examine a theoretical estimator that is intractable to calculate and use it to derive information-theoretic bounds of exact recovery. We then propose two tractable estimators: a variant of RANSAC and a simple relaxation of the theoretical estimator. The two estimators are fast to compute and achieve state-of-the-art theoretical performance in a noiseless RSR setting with adversarial outliers. The former estimator achieves better theoretical guarantees in the noiseless case, while the latter estimator is robust to small noise, and its guarantees significantly improve with non-adversarial models of outliers. We give a complete comparison of guarantees for the adversarial RSR problem, as well as a short discussion on the estimation of affine subspaces.Comment: 21 pages, 1 tabl

    Online Robust Subspace Tracking from Partial Information

    Full text link
    This paper presents GRASTA (Grassmannian Robust Adaptive Subspace Tracking Algorithm), an efficient and robust online algorithm for tracking subspaces from highly incomplete information. The algorithm uses a robust l1l^1-norm cost function in order to estimate and track non-stationary subspaces when the streaming data vectors are corrupted with outliers. We apply GRASTA to the problems of robust matrix completion and real-time separation of background from foreground in video. In this second application, we show that GRASTA performs high-quality separation of moving objects from background at exceptional speeds: In one popular benchmark video example, GRASTA achieves a rate of 57 frames per second, even when run in MATLAB on a personal laptop.Comment: 28 pages, 12 figure

    Online Algorithms for Factorization-Based Structure from Motion

    Full text link
    We present a family of online algorithms for real-time factorization-based structure from motion, leveraging a relationship between incremental singular value decomposition and recently proposed methods for online matrix completion. Our methods are orders of magnitude faster than previous state of the art, can handle missing data and a variable number of feature points, and are robust to noise and sparse outliers. We demonstrate our methods on both real and synthetic sequences and show that they perform well in both online and batch settings. We also provide an implementation which is able to produce 3D models in real time using a laptop with a webcam

    Adaptive Stochastic Gradient Descent on the Grassmannian for Robust Low-Rank Subspace Recovery and Clustering

    Full text link
    In this paper, we present GASG21 (Grassmannian Adaptive Stochastic Gradient for L2,1L_{2,1} norm minimization), an adaptive stochastic gradient algorithm to robustly recover the low-rank subspace from a large matrix. In the presence of column outliers, we reformulate the batch mode matrix L2,1L_{2,1} norm minimization with rank constraint problem as a stochastic optimization approach constrained on Grassmann manifold. For each observed data vector, the low-rank subspace S\mathcal{S} is updated by taking a gradient step along the geodesic of Grassmannian. In order to accelerate the convergence rate of the stochastic gradient method, we choose to adaptively tune the constant step-size by leveraging the consecutive gradients. Furthermore, we demonstrate that with proper initialization, the K-subspaces extension, K-GASG21, can robustly cluster a large number of corrupted data vectors into a union of subspaces. Numerical experiments on synthetic and real data demonstrate the efficiency and accuracy of the proposed algorithms even with heavy column outliers corruption.Comment: 13 pages, 12 figures and 6 table
    • …
    corecore