723 research outputs found

    A Consumer-Based Model of Competitive Diffusion of Two Goods: The Effects of Network Externalities and Local Interactions

    Get PDF
    The diffusion of two competitive, interchangeable, and durable goods is studied under the framework of a spatial game where consumers are distributed on a two-dimensional square lattice and play 3×\times3 symmetric coordination-like games with their nearest neighbors. There are three strategies, either consuming a product A or B, or a strategy C of not consuming either A or B. The payoff matrix of the game contains the positive effects of network externality, that is, the payoffs are increasing functions of the number of agents adopting the strategies A or B. Both simulations and mean-field approximation show that the existence of the positive effects of the network externality amplifies any slight initial difference in the number of agents who adopt either A or B and eventually promotes the superior product to take over the entire market. On the other hand, without effects of the network externality the slight initial difference is not enlarged and both superior and inferior products are observed to coexist by forming clusters in the market. Moreover, the effects of innovation factors that help an inferior product to retake the market are studied. It is shown that both the timing and size of the innovation factor matter for an inferior product in order to retake the market.competitive diffusion, network externality, local interaction, global externality, local externality, evolutionary game, spatial game

    Descriptional complexity of cellular automata and decidability questions

    Get PDF
    We study the descriptional complexity of cellular automata (CA), a parallel model of computation. We show that between one of the simplest cellular models, the realtime-OCA. and "classical" models like deterministic finite automata (DFA) or pushdown automata (PDA), there will be savings concerning the size of description not bounded by any recursive function, a so-called nonrecursive trade-off. Furthermore, nonrecursive trade-offs are shown between some restricted classes of cellular automata. The set of valid computations of a Turing machine can be recognized by a realtime-OCA. This implies that many decidability questions are not even semi decidable for cellular automata. There is no pumping lemma and no minimization algorithm for cellular automata

    On the descriptional complexity of iterative arrays

    Get PDF
    The descriptional complexity of iterative arrays (lAs) is studied. Iterative arrays are a parallel computational model with a sequential processing of the input. It is shown that lAs when compared to deterministic finite automata or pushdown automata may provide savings in size which are not bounded by any recursive function, so-called non-recursive trade-offs. Additional non-recursive trade-offs are proven to exist between lAs working in linear time and lAs working in real time. Furthermore, the descriptional complexity of lAs is compared with cellular automata (CAs) and non-recursive trade-offs are proven between two restricted classes. Finally, it is shown that many decidability questions for lAs are undecidable and not semidecidable

    Sublinearly space bounded iterative arrays

    Get PDF
    Iterative arrays (IAs) are a, parallel computational model with a sequential processing of the input. They are one-dimensional arrays of interacting identical deterministic finite automata. In this note, realtime-lAs with sublinear space bounds are used to accept formal languages. The existence of a proper hierarchy of space complexity classes between logarithmic anel linear space bounds is proved. Furthermore, an optimal spacc lower bound for non-regular language recognition is shown. Key words: Iterative arrays, cellular automata, space bounded computations, decidability questions, formal languages, theory of computatio

    On two-way communication in cellular automata with a fixed number of cells

    Get PDF
    The effect of adding two-way communication to k cells one-way cellular automata (kC-OCAs) on their size of description is studied. kC-OCAs are a parallel model for the regular languages that consists of an array of k identical deterministic finite automata (DFAs), called cells, operating in parallel. Each cell gets information from its right neighbor only. In this paper, two models with different amounts of two-way communication are investigated. Both models always achieve quadratic savings when compared to DFAs. When compared to a one-way cellular model, the result is that minimum two-way communication can achieve at most quadratic savings whereas maximum two-way communication may provide savings bounded by a polynomial of degree k

    On one-way cellular automata with a fixed number of cells

    Get PDF
    We investigate a restricted one-way cellular automaton (OCA) model where the number of cells is bounded by a constant number k, so-called kC-OCAs. In contrast to the general model, the generative capacity of the restricted model is reduced to the set of regular languages. A kC-OCA can be algorithmically converted to a deterministic finite automaton (DFA). The blow-up in the number of states is bounded by a polynomial of degree k. We can exhibit a family of unary languages which shows that this upper bound is tight in order of magnitude. We then study upper and lower bounds for the trade-off when converting DFAs to kC-OCAs. We show that there are regular languages where the use of kC-OCAs cannot reduce the number of states when compared to DFAs. We then investigate trade-offs between kC-OCAs with different numbers of cells and finally treat the problem of minimizing a given kC-OCA

    Frontiers of Membrane Computing: Open Problems and Research Topics

    Get PDF
    This is a list of open problems and research topics collected after the Twelfth Conference on Membrane Computing, CMC 2012 (Fontainebleau, France (23 - 26 August 2011), meant initially to be a working material for Tenth Brainstorming Week on Membrane Computing, Sevilla, Spain (January 30 - February 3, 2012). The result was circulated in several versions before the brainstorming and then modified according to the discussions held in Sevilla and according to the progresses made during the meeting. In the present form, the list gives an image about key research directions currently active in membrane computing

    Cellular Automaton Belousov-Zhabotinsky Model for Binary Full Adder

    Get PDF
    © 2017 World Scientific Publishing Company. The continuous increment in the performance of classical computers has been driven to its limit. New ways are studied to avoid this oncoming bottleneck and many answers can be found. An example is the Belousov-Zhabotinsky (BZ) reaction which includes some fundamental and essential characteristics that attract chemists, biologists, and computer scientists. Interaction of excitation wave-fronts in BZ system, can be interpreted in terms of logical gates and applied in the design of unconventional hardware components. Logic gates and other more complicated components have been already proposed using different topologies and particular characteristics. In this study, the inherent parallelism and simplicity of Cellular Automata (CAs) modeling is combined with an Oregonator model of light-sensitive version of BZ reaction. The resulting parallel and computationally-inexpensive model has the ability to simulate a topology that can be considered as a one-bit full adder digital component towards the design of an Arithmetic Logic Unit (ALU)
    corecore