248 research outputs found

    Global Bilateral Symmetry Detection Using Multiscale Mirror Histograms

    Get PDF
    In recent years, there has been renewed interest in bilateral symmetry detection in images. It consists in detecting the main bilateral symmetry axis inside artificial or natural images. State-of-the-art methods combine feature point detection, pairwise comparison and voting in Hough-like space. In spite of their good performance, they fail to give reliable results over challenging real-world and artistic images. In this paper, we propose a novel symmetry detection method using multi-scale edge features combined with local orientation histograms. An experimental evaluation is conducted on public datasets plus a new aesthetic-oriented dataset. The results show that our approach outperforms all other concurrent methods

    Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

    Get PDF
    Symmetry is an important composition feature by investigating similar sides inside an image plane. It has a crucial effect to recognize man-made or nature objects within the universe. Recent symmetry detection approaches used a smoothing kernel over different voting maps in the polar coordinate system to detect symmetry peaks, which split the regions of symmetry axis candidates in inefficient way. We propose a reliable voting representation based on weighted linear-directional kernel density estimation, to detect multiple symmetries over challenging real-world and synthetic images. Experimental evaluation on two public datasets demonstrates the superior performance of the proposed algorithm to detect global symmetry axes respect to the major image shapes

    Wavelet-Based Reflection Symmetry Detection via Textural and Color Histograms

    Get PDF
    Symmetry is one of the significant visual properties inside an image plane, to identify the geometrically balanced structures through real-world objects. Existing symmetry detection methods rely on descriptors of the local image features and their neighborhood behavior, resulting incomplete symmetrical axis candidates to discover the mirror similarities on a global scale. In this paper, we propose a new reflection symmetry detection scheme, based on a reliable edge-based feature extraction using Log-Gabor filters, plus an efficient voting scheme parameterized by their corresponding textural and color neighborhood information. Experimental evaluation on four single-case and three multiple-case symmetry detection datasets validates the superior achievement of the proposed work to find global symmetries inside an image

    Symmetry Shape Prior for Object Segmentation

    Get PDF
    Symmetry is a useful segmentation cue. We develop an algorithm for segmenting a single symmetric object from the background. Our algorithm is formulated in the principled global optimization framework. Thus we can incorporate all the useful segmentation cues in the global energy function, in addition to the symmetry shape prior. We use the standard cues of regular boundary and coherent object (background) appearance. Our algorithm consists of two stages. The first stage, based on seam carving, detects a set of symmetry axis candidates. Symmetry axis is detected by first finding image “seams” that are aligned with intensity gradients and then matching them based on pairwise symmetry. The second stage formulates symmetric object segmentation in discrete optimization framework. We choose the longest symmetry axis as the object axis. Object symmetry is encouraged through submodular long-range pairwise terms. These pairwise terms are submodular, so optimization with a graph cut is applicable. We demonstrate the effectiveness of symmetry cue on a new symmetric object dataset

    Bioinspired symmetry detection on resource limited embedded platforms

    Get PDF
    This work is inspired by the vision of flying insects which enables them to detect and locate a set of relevant objects with remarkable effectiveness despite very limited brainpower. The bioinspired approach worked out here focuses on detection of symmetric objects to be performed by resource-limited embedded platforms such as micro air vehicles. Symmetry detection is posed as a pattern matching problem which is solved by an approach based on the use of composite correlation filters. Two variants of the approach are proposed, analysed and tested in which symmetry detection is cast as 1) static and 2) dynamic pattern matching problems. In the static variant, images of objects are input to two dimentional spatial composite correlation filters. In the dynamic variant, a video (resulting from platform motion) is input to a composite correlation filter of which its peak response is used to define symmetry. In both cases, a novel method is used for designing the composite filter templates for symmetry detection. This method significantly reduces the level of detail which needs to be matched to achieve good detection performance. The resulting performance is systematically quantified using the ROC analysis; it is demonstrated that the bioinspired detection approach is better and with a lower computational cost compared to the best state-of-the-art solution hitherto available

    Advanced concepts for intelligent vision systems

    Get PDF

    Symptoms Based Image Predictive Analysis for Citrus Orchards Using Machine Learning Techniques: A Review

    Get PDF
    In Agriculture, orchards are the deciding factor in the country’s economy. There are many orchards, and citrus and sugarcane will cover 60 percent of them. These citrus orchards satisfy the necessity of citrus fruits and citrus products, and these citrus fruits contain more vitamin C. The citrus orchards have had some problems generating good yields and quality products. Pathogenic diseases, pests, and water shortages are the three main problems that plants face. Farmers can find these problems early on with the support of machine learning and deep learning, which may also change how they feel about technology.  By doing this in agriculture, the farmers can cut off the major issues of yield and quality losses. This review gives enormous methods for identifying and classifying plant pathogens, pests, and water stresses using image-based work. In this review, the researchers present detailed information about citrus pathogens, pests, and water deficits. Methods and techniques that are currently available will be used to validate the problem. These will include pre-processing for intensification, segmentation, feature extraction, and selection processes, machine learning-based classifiers, and deep learning models. In this work, researchers thoroughly examine and outline the various research opportunities in the field. This review provides a comprehensive analysis of citrus plants and orchards; Researchers used a systematic review to ensure comprehensive coverage of this topic

    ON SYMMETRY: A FRAMEWORK FOR AUTOMATED SYMMETRY DETECTION

    Get PDF
    Symmetry has weaved itself into almost all fabrics of science, as well as in arts, and has left an indelible imprint on our everyday lives. And, in the same manner, it has pervaded a wide range of areas of computer science, especially computer vision area, and a copious amount of literature has been produced to seek an algorithmic way to identify symmetry in digital data. Notwithstanding decades of endeavor and attempt to have an efficient system that can locate and recover symmetry embedded in real-world images, it is still challenging to fully automate such tasks while maintaining a high level of efficiency. The subject of this thesis is symmetry of imaged objects. Symmetry is one of the non-accidental features of shapes and has long been (maybe mistakenly) speculated as a pre-attentive feature, which improves recognition of quickly presented objects and reconstruction of shapes from incomplete set of measurements. While symmetry is known to provide rich and useful geometric cues to computer vision, it has been barely used as a principal feature for applications because figuring out how to represent and recognize symmetries embedded in objects is a singularly difficult task, both for computer vision and for perceptual psychology. The three main problems addressed in the dissertation are: (i) finding approximate symmetry by identifying the most prominent axis of symmetry out of an entire region, (ii) locating bilaterally symmetrical areas from a scene, and (iii) automating the process of symmetry recovery by solving the problems mentioned above. Perfect symmetries are rare in the extreme in natural images and symmetry perception in humans allows for qualification so that symmetry can be graduated based on the degree of structural deformation or replacement error. There have been many approaches to detect approximate symmetry by searching an optimal solution in a form of an exhaustive exploration of the parameter space or surmising the center of mass. The algorithm set out in this thesis circumvents the computationally intensive operations by using geometric constraints of symmetric images, and assumes no prerequisite knowledge of the barycenter. The results from an extensive set of evaluation experiments on metrics for symmetry distance and a comparison of the performance between the method presented in this thesis and the state of the art approach are demonstrated as well. Many biological vision systems employ a special computational strategy to locate regions of interest based on local image cues while viewing a compound visual scene. The method taken in this thesis is a bottom-up approach that causes the observer favors stimuli based on their saliency, and creates a feature map contingent on symmetry. With the help of summed area tables, the time complexity of the proposed algorithm is linear in the size of the image. The distinguished regions are then delivered to the algorithm described above to uncover approximate symmetry
    • …
    corecore