1,978 research outputs found

    Neural Lyapunov Control

    Full text link
    We propose new methods for learning control policies and neural network Lyapunov functions for nonlinear control problems, with provable guarantee of stability. The framework consists of a learner that attempts to find the control and Lyapunov functions, and a falsifier that finds counterexamples to quickly guide the learner towards solutions. The procedure terminates when no counterexample is found by the falsifier, in which case the controlled nonlinear system is provably stable. The approach significantly simplifies the process of Lyapunov control design, provides end-to-end correctness guarantee, and can obtain much larger regions of attraction than existing methods such as LQR and SOS/SDP. We show experiments on how the new methods obtain high-quality solutions for challenging control problems.Comment: NeurIPS 201

    Practical tracking control for stochastic nonlinear systems with polynomial function growth conditions

    Get PDF
    This paper mainly focuses on an output feedback practical tracking controller design for a class of stochastic nonlinear systems with polynomial function growth conditions. Mostly, there are some studies on an output feedback tracking control problem for general nonlinear systems with polynomial function growth conditions in existing achievements. Moreover, we extend it to stochastic nonlinear systems and construct an output feedback practical tracking controller based on dynamic and static phase combined, ensuring that all the states of the stochastic nonlinear system are bounded and the system tracking error can be made arbitrarily small after some large enough time. Finally, a simulation example is provided to illustrate the efficiency of the theoretical results

    Underactuated Source Seeking by Surge Force Tuning: Theory and Boat Experiments

    Full text link
    We extend source seeking algorithms, in the absence of position and velocity measurements, and with tuning of the surge input, from velocity-actuated (unicycle) kinematic models to force-actuated generic Euler-Lagrange dynamic underactuated models. In the design and analysis, we employ a symmetric product approximation, averaging, passivity, and partial-state stability theory. The proposed control law requires only real-time measurement of the source signal at the current position of the vehicle and ensures semi-global practical uniform asymptotic stability (SPUAS) with respect to the linear motion coordinates for the closed-loop system. The performance of our source seeker with surge force tuning is illustrated with both numerical simulations and experiments of an underactuated boat

    Sensitivity analysis of oscillator models in the space of phase-response curves: Oscillators as open systems

    Full text link
    Oscillator models are central to the study of system properties such as entrainment or synchronization. Due to their nonlinear nature, few system-theoretic tools exist to analyze those models. The paper develops a sensitivity analysis for phase-response curves, a fundamental one-dimensional phase reduction of oscillator models. The proposed theoretical and numerical analysis tools are illustrated on several system-theoretic questions and models arising in the biology of cellular rhythms

    Stability of gain scheduling control for aircraft with highly nonlinear behavior

    Get PDF
    "The main goal of this work is to study the stability properties of an aircraft with nonlinear behavior, controlled using a gain scheduled approach. An output feedback is proposed which is able to guarantee asymptotical stability of the task-coordinates origin and safety of the operation in the entire flight envelope. The results are derived using theory of hybrid and singular perturbed systems. It is demonstrated that both body velocity and orientation asymptotic tracking can be obtained in spite of nonlinearities and uncertainty. The results are illustrated using numerical simulations in F16 jet.

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF
    corecore