686 research outputs found

    An improved artificial bee colony algorithm for training multilayer perceptron in time series prediction

    Get PDF
    Learning an Artificial Neural Network (ANN) is an optimization task since it is desirable to find optimal weight sets of an ANN in the training process. Different equations are used to guide the network for providing an accurate result with less training and testing error. Most of the training algorithms focus on weight values, activation functions, and network structures for providing optimal outputs. Backpropagation (BP) learning algorithm is the well-known learning technique that trained ANN. However, some difficulties arise where the BP cannot get achievements without trapping in local minima and converge very slow in the solution space. Therefore, to overcome the trapping difficulties, slow convergence and difficulties in finding optimal weight values, three improved Artificial Bee Colony (ABC) algorithms built on the social insect behavior are proposed in this research for training ANN, namely the widely used Multilayer Perceptron (MLP). Here, three improved learning approaches inspired by artificial honey bee's behavior are used to train MLP. They are: Global Guided Artificial Bee Colony (GGABC), Improved Gbest Guided Artificial Bee Colony (IGGABC) and Artificial Smart Bee Colony (ASBC) algorithm. These improved algorithms were used to increase the exploration, exploitation and keep them balance for getting optimal results for a given task. Furthermore, here these algorithms used to train the MLP on two tasks; the seismic event's prediction and Boolean function classification. The simulation results of the MLP trained with improved algorithms were compared with that when trained with the standard BP, ABC, Global ABC and Particle Swarm Optimization algorithm. From the experimental analysis, the proposed improved algorithms get better the classification efficacy for time series prediction and Boolean function classification. Moreover, these improved algorithm's success to get high accuracy and optimize the best network's weight values for training the MLP

    Multivariate time series analysis for short-term forecasting of ground level ozone (O3) in Malaysia

    Get PDF
    The declining of air quality mostly affects the elderly, children, people with asthma, as well as a restriction on outdoor activities. Therefore, there is an importance to provide a statistical modelling to forecast the future values of surface layer ozone (O3) concentration. The objectives of this study are to obtain the best multivariate time series (MTS) model and develop an online air quality forecasting system for O3 concentration in Malaysia. The implementations of MTS model improve the recent statistical model on air quality for short-term prediction. Ten air quality monitoring stations situated at four (4) different types of location were selected in this study. The first type is industrial represent by Pasir Gudang, Perai, and Nilai, second type is urban represent by Kuala Terengganu, Kota Bharu, and Alor Setar. The third is suburban located in Banting, Kangar, and Tanjung Malim, also the only background station at Jerantut. The hourly record data from 2010 to 2017 were used to assess the characteristics and behaviour of O3 concentration. Meanwhile, the monthly record data of O3, particulate matter (PM10), nitrogen dioxide (NO2), sulphur dioxide (SO2), carbon monoxide (CO), temperature (T), wind speed (WS), and relative humidity (RH) were used to examine the best MTS models. Three methods of MTS namely vector autoregressive (VAR), vector moving average (VMA), and vector autoregressive moving average (VARMA), has been applied in this study. Based on the performance error, the most appropriate MTS model located in Pasir Gudang, Kota Bharu and Kangar is VAR(1), Kuala Terengganu and Alor Setar for VAR(2), Perai and Nilai for VAR(3), Tanjung Malim for VAR(4) and Banting for VAR(5). Only Jerantut obtained the VMA(2) as the best model. The lowest root mean square error (RMSE) and normalized absolute error is 0.0053 and <0.0001 which is for MTS model in Perai and Kuala Terengganu, respectively. Meanwhile, for mean absolute error (MAE), the lowest is in Banting and Jerantut at 0.0013. The online air quality forecasting system for O3 was successfully developed based on the best MTS models to represent each monitoring station

    Causative factors of construction and demolition waste generation in Iraq Construction Industry

    Get PDF
    The construction industry has hurt the environment from the waste generated during construction activities. Thus, it calls for serious measures to determine the causative factors of construction waste generated. There are limited studies on factors causing construction, and demolition (C&D) waste generation, and these limited studies only focused on the quantification of construction waste. This study took the opportunity to identify the causative factors for the C&D waste generation and also to determine the risk level of each causal factor, and the most important minimization methods to avoiding generating waste. This study was carried out based on the quantitative approach. A total of 39 factors that causes construction waste generation that has been identified from the literature review were considered which were then clustered into 4 groups. Improved questionnaire surveys by 38 construction experts (consultants, contractors and clients) during the pilot study. The actual survey was conducted with a total of 380 questionnaires, received with a response rate of 83.3%. Data analysis was performed using SPSS software. Ranking analysis using the mean score approach found the five most significant causative factors which are poor site management, poor planning, lack of experience, rework and poor controlling. The result also indicated that the majority of the identified factors having a high-risk level, in addition, the better minimization method is environmental awareness. A structural model was developed based on the 4 groups of causative factors using the Partial Least Squared-Structural Equation Modelling (PLS-SEM) technique. It was found that the model fits due to the goodness of fit (GOF ≥ 0.36= 0.658, substantial). Based on the outcome of this study, 39 factors were relevant to the generation of construction and demolition waste in Iraq. These groups of factors should be avoided during construction works to reduce the waste generated. The findings of this study are helpful to authorities and stakeholders in formulating laws and regulations. Furthermore, it provides opportunities for future researchers to conduct additional research’s on the factors that contribute to construction waste generation

    Satisfiability Logic Analysis Via Radial Basis Function Neural Network with Artificial Bee Colony Algorithm

    Get PDF
    Radial Basis Function Neural Network (RBFNN) is a variant of artificial neural network (ANN) paradigm, utilized in a plethora of fields of studies such as engineering, technology and science. 2 Satisfiability (2SAT) programming has been coined as a prominent logical rule that defines the identity of RBFNN. In this research, a swarm-based searching algorithm namely, the Artificial Bee Colony (ABC) will be introduced to facilitate the training of RBFNN. Worth mentioning that ABC is a new population-based metaheuristics algorithm inspired by the intelligent comportment of the honey bee hives. The optimization pattern in ABC was found fruitful in RBFNN since ABC reduces the complexity of the RBFNN in optimizing important parameters. The effectiveness of ABC in RBFNN has been examined in terms of various performance evaluations. Therefore, the simulation has proved that the ABC complied efficiently in tandem with the Radial Basis Neural Network with 2SAT according to various evaluations such as the Root Mean Square Error (RMSE), Sum of Squares Error (SSE), Mean Absolute Percentage Error (MAPE), and CPU Time. Overall, the experimental results have demonstrated the capability of ABC in enhancing the learning phase of RBFNN-2SAT as compared to the Genetic Algorithm (GA), Differential Evolution (DE) algorithm and Particle Swarm Optimization (PSO) algorithm

    Color Image Segmentation Using the Bee Algorithm in the Markovian Framework

    Get PDF
    This thesis presents color image segmentation as a vital step of image analysis in computer vision. A survey of the Markov Random Field (MRF) with four different implementation methods for its parameter estimation is provided. In addition, a survey of swarm intelligence and a number of swarm based algorithms are presented. The MRF model is used for color image segmentation in the framework. This thesis introduces a new image segmentation implementation that uses the bee algorithm as an optimization tool in the Markovian framework. The experiments show that the new proposed method performs faster than the existing implementation methods with about the same segmentation accuracy

    Design Of Perturbative Hyper-Heuristics For Combinatorial Optimisation

    Get PDF
    Combinatorial optimisation is an area which seeks to identify optimal solution(s) from a discrete solution search space. Approaches for solving combinatorial optimisation problems can be separated into two main sub-classes, i.e. exact and approximation algorithms. Exact algorithm is a sub-class of techniques that is able to guarantee global optimality. However, exact algorithms are not feasible for solving complex problem due to its high computational overhead. Approximation algorithm is a sub-class of techniques which is able to provide sub-optimal solution(s) with reasonable computational cost. In order to explore the solution search space of a combinatorial optimisation problem, an approximation algorithm performs perturbations on the existing solutions by adopting a single or multiple perturbative Low-Level Heuristic(s) (LLHs). The use of a single LLH leads to poor performance when the particular heuristic is incompetent in solving the problem. Thus, the use of multiple LLHs is more desirable as the weaknesses of one heuristic can be compensated by the strengths of another. When there are multiple LLHs, a hyper-heuristic can be integrated to determine the choice of heuristics for a particular problem or situation. Hyper-heuristic automates the selection of LLHs through a high-level heuristic that consists of two key components, i.e. a heuristic selection method and a move acceptance method. The capability of a high-level heuristic is highly problem dependent as the landscape properties of a problem are unique among others. The high-level heuristics in the existing hyper-heuristics are designed by manually matching different combinations of high-level heuristic components
    corecore