13,078 research outputs found

    Failure mode prediction and energy forecasting of PV plants to assist dynamic maintenance tasks by ANN based models

    Get PDF
    In the field of renewable energy, reliability analysis techniques combining the operating time of the system with the observation of operational and environmental conditions, are gaining importance over time. In this paper, reliability models are adapted to incorporate monitoring data on operating assets, as well as information on their environmental conditions, in their calculations. To that end, a logical decision tool based on two artificial neural networks models is presented. This tool allows updating assets reliability analysis according to changes in operational and/or environmental conditions. The proposed tool could easily be automated within a supervisory control and data acquisition system, where reference values and corresponding warnings and alarms could be now dynamically generated using the tool. Thanks to this capability, on-line diagnosis and/or potential asset degradation prediction can be certainly improved. Reliability models in the tool presented are developed according to the available amount of failure data and are used for early detection of degradation in energy production due to power inverter and solar trackers functional failures. Another capability of the tool presented in the paper is to assess the economic risk associated with the system under existing conditions and for a certain period of time. This information can then also be used to trigger preventive maintenance activities

    Forecasting of commercial sales with large scale Gaussian Processes

    Full text link
    This paper argues that there has not been enough discussion in the field of applications of Gaussian Process for the fast moving consumer goods industry. Yet, this technique can be important as it e.g., can provide automatic feature relevance determination and the posterior mean can unlock insights on the data. Significant challenges are the large size and high dimensionality of commercial data at a point of sale. The study reviews approaches in the Gaussian Processes modeling for large data sets, evaluates their performance on commercial sales and shows value of this type of models as a decision-making tool for management.Comment: 1o pages, 5 figure

    Towards the Evolution of Novel Vertical-Axis Wind Turbines

    Full text link
    Renewable and sustainable energy is one of the most important challenges currently facing mankind. Wind has made an increasing contribution to the world's energy supply mix, but still remains a long way from reaching its full potential. In this paper, we investigate the use of artificial evolution to design vertical-axis wind turbine prototypes that are physically instantiated and evaluated under approximated wind tunnel conditions. An artificial neural network is used as a surrogate model to assist learning and found to reduce the number of fabrications required to reach a higher aerodynamic efficiency, resulting in an important cost reduction. Unlike in other approaches, such as computational fluid dynamics simulations, no mathematical formulations are used and no model assumptions are made.Comment: 14 pages, 11 figure

    Probabilistic Models of Motor Production

    Get PDF
    N. Bernstein defined the ability of the central neural system (CNS) to control many degrees of freedom of a physical body with all its redundancy and flexibility as the main problem in motor control. He pointed at that man-made mechanisms usually have one, sometimes two degrees of freedom (DOF); when the number of DOF increases further, it becomes prohibitively hard to control them. The brain, however, seems to perform such control effortlessly. He suggested the way the brain might deal with it: when a motor skill is being acquired, the brain artificially limits the degrees of freedoms, leaving only one or two. As the skill level increases, the brain gradually "frees" the previously fixed DOF, applying control when needed and in directions which have to be corrected, eventually arriving to the control scheme where all the DOF are "free". This approach of reducing the dimensionality of motor control remains relevant even today. One the possibles solutions of the Bernstetin's problem is the hypothesis of motor primitives (MPs) - small building blocks that constitute complex movements and facilitite motor learnirng and task completion. Just like in the visual system, having a homogenious hierarchical architecture built of similar computational elements may be beneficial. Studying such a complicated object as brain, it is important to define at which level of details one works and which questions one aims to answer. David Marr suggested three levels of analysis: 1. computational, analysing which problem the system solves; 2. algorithmic, questioning which representation the system uses and which computations it performs; 3. implementational, finding how such computations are performed by neurons in the brain. In this thesis we stay at the first two levels, seeking for the basic representation of motor output. In this work we present a new model of motor primitives that comprises multiple interacting latent dynamical systems, and give it a full Bayesian treatment. Modelling within the Bayesian framework, in my opinion, must become the new standard in hypothesis testing in neuroscience. Only the Bayesian framework gives us guarantees when dealing with the inevitable plethora of hidden variables and uncertainty. The special type of coupling of dynamical systems we proposed, based on the Product of Experts, has many natural interpretations in the Bayesian framework. If the dynamical systems run in parallel, it yields Bayesian cue integration. If they are organized hierarchically due to serial coupling, we get hierarchical priors over the dynamics. If one of the dynamical systems represents sensory state, we arrive to the sensory-motor primitives. The compact representation that follows from the variational treatment allows learning of a motor primitives library. Learned separately, combined motion can be represented as a matrix of coupling values. We performed a set of experiments to compare different models of motor primitives. In a series of 2-alternative forced choice (2AFC) experiments participants were discriminating natural and synthesised movements, thus running a graphics Turing test. When available, Bayesian model score predicted the naturalness of the perceived movements. For simple movements, like walking, Bayesian model comparison and psychophysics tests indicate that one dynamical system is sufficient to describe the data. For more complex movements, like walking and waving, motion can be better represented as a set of coupled dynamical systems. We also experimentally confirmed that Bayesian treatment of model learning on motion data is superior to the simple point estimate of latent parameters. Experiments with non-periodic movements show that they do not benefit from more complex latent dynamics, despite having high kinematic complexity. By having a fully Bayesian models, we could quantitatively disentangle the influence of motion dynamics and pose on the perception of naturalness. We confirmed that rich and correct dynamics is more important than the kinematic representation. There are numerous further directions of research. In the models we devised, for multiple parts, even though the latent dynamics was factorized on a set of interacting systems, the kinematic parts were completely independent. Thus, interaction between the kinematic parts could be mediated only by the latent dynamics interactions. A more flexible model would allow a dense interaction on the kinematic level too. Another important problem relates to the representation of time in Markov chains. Discrete time Markov chains form an approximation to continuous dynamics. As time step is assumed to be fixed, we face with the problem of time step selection. Time is also not a explicit parameter in Markov chains. This also prohibits explicit optimization of time as parameter and reasoning (inference) about it. For example, in optimal control boundary conditions are usually set at exact time points, which is not an ecological scenario, where time is usually a parameter of optimization. Making time an explicit parameter in dynamics may alleviate this
    • …
    corecore