43,172 research outputs found

    Structural and dynamical features of multiple metastable glassy states in a colloidal system with competing interactions

    Full text link
    Systems in which a short-ranged attraction and long-ranged repulsion compete are intrinsically frustrated, leading their structure and dynamics to be dominated either by mesoscopic order or by metastable disorder. Here we report the latter case in a colloidal system with long-ranged electrostatic repulsions and short-ranged depletion attractions. We find a variety of states exhibiting slow non-diffusive dynamics: a gel, a glassy state of clusters, and a state reminiscent of a Wigner glass. Varying the interactions, we find a continuous crossover between the Wigner and cluster glassy states, and a sharp discontinuous transition between the Wigner glassy state and gel. This difference reflects the fact that dynamic arrest is driven by repulsion for the two glassy states and attraction in the case of the gel

    Defects and glassy dynamics in solid He-4: Perspectives and current status

    Full text link
    We review the anomalous behavior of solid He-4 at low temperatures with particular attention to the role of structural defects present in solid. The discussion centers around the possible role of two level systems and structural glassy components for inducing the observed anomalies. We propose that the origin of glassy behavior is due to the dynamics of defects like dislocations formed in He-4. Within the developed framework of glassy components in a solid, we give a summary of the results and predictions for the effects that cover the mechanical, thermodynamic, viscoelastic, and electro-elastic contributions of the glassy response of solid He-4. Our proposed glass model for solid He-4 has several implications: (1) The anomalous properties of He-4 can be accounted for by allowing defects to freeze out at lowest temperatures. The dynamics of solid He-4 is governed by glasslike (glassy) relaxation processes and the distribution of relaxation times varies significantly between different torsional oscillator, shear modulus, and dielectric function experiments. (2) Any defect freeze-out will be accompanied by thermodynamic signatures consistent with entropy contributions from defects. It follows that such entropy contribution is much smaller than the required superfluid fraction, yet it is sufficient to account for excess entropy at lowest temperatures. (3) We predict a Cole-Cole type relation between the real and imaginary part of the response functions for rotational and planar shear that is occurring due to the dynamics of defects. Similar results apply for other response functions. (4) Using the framework of glassy dynamics, we predict low-frequency yet to be measured electro-elastic features in defect rich He-4 crystals. These predictions allow one to directly test the ideas and very presence of glassy contributions in He-4.Comment: 33 pages, 13 figure

    Slow dynamics in glassy soft matter

    Full text link
    Measuring, characterizing and modelling the slow dynamics of glassy soft matter is a great challenge, with an impact that ranges from industrial applications to fundamental issues in modern statistical physics, such as the glass transition and the description of out-of-equilibrium systems. Although our understanding of these phenomena is still far from complete, recent simulations and novel theoretical approaches and experimental methods have shed new light on the dynamics of soft glassy materials. In this paper, we review the work of the last few years, with an emphasis on experiments in four distinct and yet related areas: the existence of two different glass states (attractive and repulsive), the dynamics of systems very far from equilibrium, the effect of an external perturbation on glassy materials, and dynamical heterogeneity

    Thermodynamic picture of the glassy state gained from exactly solvable models

    Full text link
    A picture for thermodynamics of the glassy state was introduced recently by us (Phys. Rev. Lett. {\bf 79} (1997) 1317; {\bf 80} (1998) 5580). It starts by assuming that one extra parameter, the effective temperature, is needed to describe the glassy state. This approach connects responses of macroscopic observables to a field change with their temporal fluctuations, and with the fluctuation-dissipation relation, in a generalized, non-equilibrium way. Similar universal relations do not hold between energy fluctuations and the specific heat. In the present paper the underlying arguments are discussed in greater length. The main part of the paper involves details of the exact dynamical solution of two simple models introduced recently: uncoupled harmonic oscillators subject to parallel Monte Carlo dynamics, and independent spherical spins in a random field with such dynamics. At low temperature the relaxation time of both models diverges as an Arrhenius law, which causes glassy behavior in typical situations. In the glassy regime we are able to verify the above mentioned relations for the thermodynamics of the glassy state. In the course of the analysis it is argued that stretched exponential behavior is not a fundamental property of the glassy state, though it may be useful for fitting in a limited parameter regime.Comment: revised version, 38 pages, 9 figure

    Glassy dynamics in granular compaction

    Full text link
    Two models are presented to study the influence of slow dynamics on granular compaction. It is found in both cases that high values of packing fraction are achieved only by the slow relaxation of cooperative structures. Ongoing work to study the full implications of these results is discussed.Comment: 12 pages, 9 figures; accepted in J. Phys: Condensed Matter, proceedings of the Trieste workshop on 'Unifying concepts in glass physics

    Glassy dynamics near zero temperature

    Full text link
    We numerically study finite-dimensional spin glasses at low and zero temperature, finding evidences for (i) strong time/space heterogeneities, (ii) spontaneous time scale separation and (iii) power law distributions of flipping times. Using zero temperature dynamics we study blocking, clustering and persistence phenomena

    Landau theory of glassy dynamics

    Full text link
    An exact solution of a Landau model of an order-disorder transition with activated critical dynamics is presented. The model describes a funnel-shaped topography of the order parameter space in which the number of energy lowering trajectories rapidly diminishes as the ordered ground-state is approached. This leads to an asymmetry in the effective transition rates which results in a non-exponential relaxation of the order-parameter fluctuations and a Vogel-Fulcher-Tammann divergence of the relaxation times, typical of a glass transition. We argue that the Landau model provides a general framework for studying glassy dynamics in a variety of systems.Comment: 4 pages, 2 figure

    Slow Dynamics in Glasses

    Full text link
    We will review some of the theoretical progresses that have been recently done in the study of slow dynamics of glassy systems: the general techniques used for studying the dynamics in the mean field approximation and the emergence of a pure dynamical transition in some of these systems. We show how the results obtained for a random Hamiltonian may be also applied to a given Hamiltonian. These two results open the way to a better understanding of the glassy transition in real systems
    corecore