34,016 research outputs found

    A Compressive Multi-Mode Superresolution Display

    Get PDF
    Compressive displays are an emerging technology exploring the co-design of new optical device configurations and compressive computation. Previously, research has shown how to improve the dynamic range of displays and facilitate high-quality light field or glasses-free 3D image synthesis. In this paper, we introduce a new multi-mode compressive display architecture that supports switching between 3D and high dynamic range (HDR) modes as well as a new super-resolution mode. The proposed hardware consists of readily-available components and is driven by a novel splitting algorithm that computes the pixel states from a target high-resolution image. In effect, the display pixels present a compressed representation of the target image that is perceived as a single, high resolution image.Comment: Technical repor

    Real-time Image Generation for Compressive Light Field Displays

    Get PDF
    With the invention of integral imaging and parallax barriers in the beginning of the 20th century, glasses-free 3D displays have become feasible. Only today—more than a century later—glasses-free 3D displays are finally emerging in the consumer market. The technologies being employed in current-generation devices, however, are fundamentally the same as what was invented 100 years ago. With rapid advances in optical fabrication, digital processing power, and computational perception, a new generation of display technology is emerging: compressive displays exploring the co-design of optical elements and computational processing while taking particular characteristics of the human visual system into account. In this paper, we discuss real-time implementation strategies for emerging compressive light field displays. We consider displays composed of multiple stacked layers of light-attenuating or polarization-rotating layers, such as LCDs. The involved image generation requires iterative tomographic image synthesis. We demonstrate that, for the case of light field display, computed tomographic light field synthesis maps well to operations included in the standard graphics pipeline, facilitating efficient GPU-based implementations with real-time framerates.United States. Defense Advanced Research Projects Agency. Soldier Centric Imaging via Computational CamerasNational Science Foundation (U.S.) (Grant IIS-1116452)United States. Defense Advanced Research Projects Agency. Maximally scalable Optical Sensor Array Imaging with Computation ProgramAlfred P. Sloan Foundation (Research Fellowship)United States. Defense Advanced Research Projects Agency (Young Faculty Award

    A compressive light field projection system

    Get PDF
    For about a century, researchers and experimentalists have strived to bring glasses-free 3D experiences to the big screen. Much progress has been made and light field projection systems are now commercially available. Unfortunately, available display systems usually employ dozens of devices making such setups costly, energy inefficient, and bulky. We present a compressive approach to light field synthesis with projection devices. For this purpose, we propose a novel, passive screen design that is inspired by angle-expanding Keplerian telescopes. Combined with high-speed light field projection and nonnegative light field factorization, we demonstrate that compressive light field projection is possible with a single device. We build a prototype light field projector and angle-expanding screen from scratch, evaluate the system in simulation, present a variety of results, and demonstrate that the projector can alternatively achieve super-resolved and high dynamic range 2D image display when used with a conventional screen.MIT Media Lab ConsortiumNatural Sciences and Engineering Research Council of Canada (NSERC Postdoctoral Fellowship)National Science Foundation (U.S.) (Grant NSF grant 0831281

    Wide Field of View Compressive Light Field Display using a Multilayer Architecture and Tracked Viewers

    Get PDF
    In this paper, we discuss a simple extension to existing compressive multilayer light field displays that greatly extends their field of view and depth of field. Rather than optimizing these displays to create a moderately narrow field of view at the center of the display, we constrain optimization to create narrow view cones that are directed to the viewer's eyes, allowing the available display bandwidth to be utilized more efficiently. These narrow view cones follow the viewer, creating a wide apparent field of view. Imagery is also recalculated for the viewer's exact position, creating a greater depth of field. The view cones can be scaled to match the positional error and latency of the tracking system. Using more efficient optimization and commodity tracking hardware and software, we demonstrate a real-time, glasses-free 3D display that offers a 110times45 degree field of view.Natural Sciences and Engineering Research Council of Canada (Postdoctoral Fellowship

    Wide Field of View Compressive Light Field Display using a Multilayer Architecture and Tracked Viewers

    Get PDF
    In this paper, we discuss a simple extension to existing compressive multilayer light field displays that greatly extends their field of view and depth of field. Rather than optimizing these displays to create a moderately narrow field of view at the center of the display, we constrain optimization to create narrow view cones that are directed to the viewer's eyes, allowing the available display bandwidth to be utilized more efficiently. These narrow view cones follow the viewer, creating a wide apparent field of view. Imagery is also recalculated for the viewer's exact position, creating a greater depth of field. The view cones can be scaled to match the positional error and latency of the tracking system. Using more efficient optimization and commodity tracking hardware and software, we demonstrate a real-time, glasses-free 3D display that offers a 110times45 degree field of view.Natural Sciences and Engineering Research Council of Canada (Postdoctoral Fellowship

    Focus 3D: Compressive Accommodation Display

    Get PDF
    We present a glasses-free 3D display design with the potential to provide viewers with nearly correct accommodative depth cues, as well as motion parallax and binocular cues. Building on multilayer attenuator and directional backlight architectures, the proposed design achieves the high angular resolution needed for accommodation by placing spatial light modulators about a large lens: one conjugate to the viewer's eye, and one or more near the plane of the lens. Nonnegative tensor factorization is used to compress a high angular resolution light field into a set of masks that can be displayed on a pair of commodity LCD panels. By constraining the tensor factorization to preserve only those light rays seen by the viewer, we effectively steer narrow high-resolution viewing cones into the user's eyes, allowing binocular disparity, motion parallax, and the potential for nearly correct accommodation over a wide field of view. We verify the design experimentally by focusing a camera at different depths about a prototype display, establish formal upper bounds on the design's accommodation range and diffraction-limited performance, and discuss practical limitations that must be overcome to allow the device to be used with human observers

    The interdependence of spatial and angular resolution in the quality of experience of light field visualization

    Get PDF
    Light field displays provide a natural sense of 3D visual experience through the glasses-free visualization of the content. It is enabled by the smoothness of the horizontal motion parallax, which is determined by the density of source images allocated to a given field of view. This measure is commonly known as angular resolution, and similarly to spatial resolution, has a fundamental effect on the visual experience. In this paper, we investigate how the reduction of angular and spatial resolution affect each other. Our hypothesis is that lowering spatial resolution to a certain extent does not degrade the perception of the parallax effect, in fact, it may improve it. We carried out a series of subjective tests on a real light field display to test this hypothesis, results of which are introduced in this paper

    Humans perceive flicker artifacts at 500 Hz.

    Get PDF
    Humans perceive a stable average intensity image without flicker artifacts when a television or monitor updates at a sufficiently fast rate. This rate, known as the critical flicker fusion rate, has been studied for both spatially uniform lights, and spatio-temporal displays. These studies have included both stabilized and unstablized retinal images, and report the maximum observable rate as 50-90 Hz. A separate line of research has reported that fast eye movements known as saccades allow simple modulated LEDs to be observed at very high rates. Here we show that humans perceive visual flicker artifacts at rates over 500 Hz when a display includes high frequency spatial edges. This rate is many times higher than previously reported. As a result, modern display designs which use complex spatio-temporal coding need to update much faster than conventional TVs, which traditionally presented a simple sequence of natural images
    • …
    corecore