728,240 research outputs found

    Glass transition in self organizing cellular patterns

    Full text link
    We have considered the dynamical evolution of cellular patterns controlled by a stochastic Glauber process determined by the deviations of local cell topology from that of a crystalline structure. Above a critical temperature evolution is towards a common equilibrium state from any initial configuration, but beneath this temperature there is a dynamical phase transition, with a start from a quasi-random state leading to non-equilibrium glassy freezing whereas an ordered start rests almost unchanged. A temporal persistence function decays exponentially in the high temperature equilibrating state but has a characteristic slow non-equilibrium aging-like behaviour in the low temperature glassy phase.Comment: Added references, text minor change

    Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing in situ Formed Ductile Phase Dendrite Dispersions

    Get PDF
    Results are presented for a ductile metal reinforced bulk metallic glass matrix composite based on glass forming compositions in the Zr-Ti-Cu-Ni-Be system. Primary dendrite growth and solute partitioning in the molten state yields a microstructure consisting of a ductile crystalline Ti-Zr-Nb β phase, with bcc structure, in a Zr-Ti-Nb-Cu-Ni-Be bulk metallic glass matrix. Under unconstrained mechanical loading organized shear band patterns develop throughout the sample. This results in a dramatic increase in the plastic strain to failure, impact resistance, and toughness of the metallic glass

    Evidence for Auto-Correlation and Symmetry Detection in Primary Visual Cortex

    Get PDF
    The detectability of patterns in random dot arrays was measured as a function of dot density and compared with the statistical limit set by different methods of detecting the pattern. For filtering, cross-correlation, convolution, or template matching, the limit is expected to be inversely proportional to the square root of dot density. But for auto-correlation, which can detect symmetries of various types, the limit is unaffected by dot density under many conditions. Confirming previous results, we found that the coherence-threshold is often constant for Glass patterns, but the range of constancy depends on details of the display procedure. Coherence-thresholds were found to increase when the average number of dots expected at each location rose towards or exceeded a value of one; we therefore think it results from the non-linear effects of occlusion that occur when a later-programmed dot falls in the same location as an earlier one. To test this, these non-linear effects were prevented by arranging the luminance of each location to be directly proportional to the number of times that location was covered by a dot. Millions of dots can be used for these images, and they retain the streakiness of Glass patterns, while discrete dots disappear. The constant coherence threshold for detecting this streakiness is maintained over a huge range of dot densities, extending right down to the range where discrete dots become visible and up to patterns that are essentially full-tone images with no discrete dots. At threshold, all these patterns have similar auto-correlation functions, as we can see from the way both low dot-number Glass-patterns and these mega-dot, multi-tone, Glass-like images are formed. This startling fact raises the question whether primary visual cortex computes auto-correlations as well as, or even instead of, the local, Fourier-type, wavelet analysis of the currently popular paradigm

    A study of the nature of solid particle impact and shape on the erosion morphology of ductile metals

    Get PDF
    Impulsive versus steady jet impingement of spherical glass bead particles on metal surfaces was studied using a gas gun facility and a commercial sand blasting apparatus. Crushed glass particles were also used in the sand blasting apparatus as well as glass beads. Comparisons of the different types of erosion patterns were made. Scanning electron microscopy, surface profilometry and energy dispersive X-ray spectroscopy analysis were used to characterize erosion patterns. The nature of the wear can be divided into cutting and deformation, each with its own characteristic features. Surface chemistry analysis indicates the possibility of complex chemical and/or mechanical interactions between erodants and target materials

    Perception of dynamic Glass patterns

    Get PDF
    AbstractIn the mammalian brain, form and motion are processed through two distinct pathways at early stages of visual processing. However, recent evidence suggests that these two pathways may interact. Here we used dynamic Glass patterns, which have been previously shown to create the perception of coherent motion in humans, despite containing no motion coherence. Glass patterns are static stimuli that consist of randomly positioned dot pairs that are integrated spatially to create the perception of a global form, whereas dynamic Glass patterns consist of several independently generated static Glass patterns presented sequentially. In the current study, we measured the detection threshold of five types of dynamic Glass patterns and compared the rank order of the detection thresholds with those found for static Glass patterns and real motion patterns (using random dot stimuli). With both the static Glass patterns and dynamic Glass patterns, detection thresholds were lowest for concentric and radial patterns and highest for horizontal patterns. We also found that vertical patterns were better detected than horizontal patterns, consistent with prior evidence of a “horizontal effect” in the perception of natural scene images. With real motion, detection thresholds were equivalent across all patterns, with the exception of higher thresholds for spiral patterns. Our results suggest that dynamic Glass patterns are processed primarily as form prior to input into the motion system

    Ultrasonic Implantation of Bioactive Glass Particles into Poly(methyl methacrylate) Substrates

    Get PDF
    Poly(methyl methacrylate) substrates were immersed in suspensions containing bioactive 50CaO・50SiO(2) (mol%) glass particles (45 μm in diameter) and a 6:4 (volume fraction) mixture of ethanol and THF, and an ultrasonic energy was applied to the system. A layer of glass particles was implanted and covered more than 50% of the substrate surface. Thin film X-ray diffraction patterns and FT-IR reflection spectra indicated deposition of apatite on the glass-implanted substrates after they were soaked for 12 h in a simulated body fluid similar in apatite-deposition ability to the human blood plasma. Flake-like apatite crystallites formed on the substrate soaked in SBF for 3 days

    Temporal patterns in the upstream migration of European eels (Anguilla anguilla) at the Couesnon estuarine dam

    Get PDF
    The temporal migration patterns of European glass eel Anguilla anguilla at the Couesnon estuarine dam (Mont-Saint-Michel Bay, France)were examined in winter and spring 2004 and 2005. The dam which is located close to the river mouth constitutes a major obstacle for upstreammigrating glass eels. The migration was observed at different temporal scales, from within individual tides to complete tidal cycles between successive spring tides. The maximum number of glass eels arrived downstream of the dam at the beginning and in the middle of the flood tide. Glass eels migrated through the dam openings preferentially from the middle of the flood to the beginning of the ebb tide. Eel densities were highest during the second tide of each tide cycle that arrived at the estuarine dam and when the difference in water level between upstream and downstream of the dam was greatest, particularly at the end of the flood. Analysis of the influence of each environmental factor provided a good prediction of the glass eel recruitment peaks and, therefore, of the most favourable temporal windows for their migration. The water level and temperature were the most important environmental factors. These results provide the information needed for a dam-management program that is compatible with glass eel migration
    corecore