643,490 research outputs found

    Formation of Two Glass Phases in Binary Cu-Ag Liquid

    Get PDF
    The glass transition is alternatively described as either a dynamic transition in which there is a dramatic slowing down of the kinetics, or as a thermodynamic phase transition. To examine the physical origin of the glass transition in fragile Cu-Ag liquids, we employed molecular dynamics (MD) simulations on systems in the range of 32,000 to 2,048,000 atoms. Surprisingly, we identified a 1st order freezing transition from liquid (L) to metastable heterogenous solid-like phase, denoted as the G-glass, when a supercooled liquid evolves isothermally below its melting temperature at deep undercooling. In contrast, a more homogenous liquid-like glass, denoted as the L-glass, is achieved when the liquid is quenched continuously to room temperature with a fast cooling rate of ∼10¹¹ K/sec. We report a thermodynamic description of the L-G transition and characterize the correlation length of the heterogenous structure in the G-glass. The shear modulus of the G-glass is significantly higher than the L-glass, suggesting that the first order L-G transition is linked fundamentally to long-range elasticity involving elementary configurational excitations in the G-glass

    Dynamical Behaviour of Low Autocorrelation Models

    Full text link
    We have investigated the nature of the dynamical behaviour in low autocorrelation binary sequences. These models do have a glass transition TGT_G of a purely dynamical nature. Above the glass transition the dynamics is not fully ergodic and relaxation times diverge like a power law τ∼(T−TG)−γ\tau\sim (T-T_G)^{-\gamma} with γ\gamma close to 22. Approaching the glass transition the relaxation slows down in agreement with the first order nature of the dynamical transition. Below the glass transition the system exhibits aging phenomena like in disordered spin glasses. We propose the aging phenomena as a precise method to determine the glass transition and its first order nature.Comment: 19 pages + 14 figures, LateX, figures uuencoded at the end of the fil

    Evidence of a glass transition in a 10-state non-mean-field Potts glass

    Get PDF
    Potts glasses are prototype models that have been used to understand the structural glass transition. However, in finite space dimensions a glass transition remains to be detected in the 10-state Potts glass. Using a one-dimensional model with long-range power-law interactions we present evidence that a glass transition below the upper critical dimension can exist for short-range systems at low enough temperatures. Gaining insights into the structural glass transition for short-range systems using spin models is thus potentially possible, yet difficult.Comment: 4 pages, 1 table, 2 figure

    Viscosity and glass transition in amorphous oxides

    Get PDF
    An overview is given of amorphous oxide materials viscosity and glass-liquid transition phenomena. The viscosity is a continuous function of temperature, whereas the glass-liquid transition is accompanied by explicit discontinuities in the derivative parameters such as the specific heat or thermal expansion coefficient. A compendium of viscosity models is given including recent data on viscous flow model based on network defects in which thermodynamic parameters of configurons—elementary excitations resulting from broken bonds—are found from viscosity-temperature relationships. Glass-liquid transition phenomena are described including the configuron model of glass transition which shows a reduction of Hausdorff dimension of bonds at glass-liquid transition

    Aging vs crystallisation dynamics in hyperquenched glasses and a resolution of the water Tg controversy

    Full text link
    The possibility of observing a glass transition in water before crystallisation occurs has been debated vigorously but inconclusively over five decades [1,2]. For two decades a glass transition at 136K [2,3] was accepted but this transition has perplexing qualities [4]. Recently it has been argued[2,5],that this assignment must be wrong. The re-assignment of Tg to temperatures above the 150K crystallisation was vigorously contested [6]. Here we use detailed anneal-and-scan studies of a hyperquenched inorganic glass, which does not crystallize on heating, to interpret the perplexing aspects of the 136K water phenomenon. We show that it is indeed linked to a glass transition, though only via a cross-over phenomenon. The thermal history that gives the same behaviour ("shadow" glass transition) in the inorganic glass is linked by crossover to a "normal" glass transition 23% higher in temperature. Thus a Tg is indeed unobservable for water, while the vitreous nature of hyperquenched glassy water is strongly supported. The shadow Tg is reproducible in the inorganic glass as it is in H2O. The observed aging dynamics are very relevant to current glass theory, particularly to dynamical heterogeneity which is seen to have an energy manifestation.Comment: 23 pages, 4 figure

    Direct Identification of the Glass Transition: Growing Length Scale and the Onset of Plasticity

    Full text link
    Understanding the mechanical properties of glasses remains elusive since the glass transition itself is not fully understood, even in well studied examples of glass formers in two dimensions. In this context we demonstrate here: (i) a direct evidence for a diverging length scale at the glass transition (ii) an identification of the glass transition with the disappearance of fluid-like regions and (iii) the appearance in the glass state of fluid-like regions when mechanical strain is applied. These fluid-like regions are associated with the onset of plasticity in the amorphous solid. The relaxation times which diverge upon the approach to the glass transition are related quantitatively.Comment: 5 pages, 5 figs.; 2 figs. omitted, new fig., quasi-crystal discussion omitted, new material on relaxation time

    Ordering of the Heisenberg Spin Glass in High Dimensions

    Full text link
    Ordering of the Heisenberg spin glass with the nearest-neighbor Gaussian coupling is investigated by equilibrium Monte Carlo simulations in four and five dimensions. Ordering of the mean-field Heisenberg spin-glass is also studied for comparison. Particular attention is paid to the nature of the spin-glass and the chiral-glass orderings. Our numerical data suggest that, in five dimensions, the model exhibits a single spin-glass transition at a finite temperature, where the spin-glass order accompanying the simultaneous chiral-glass order sets in. In four dimensions, by contrast, the model exhibits a chiral-glass transition at a finite temperature, not accompanying the standard spin-glass order. The critical region associated with the chiral-glass transition, however, is very narrow, suggesting that dimension four is close to the marginal dimensionality.Comment: 18 pages, 12 figure
    • …
    corecore