676 research outputs found

    Investigating the dynamics of Greenland's glacier-fjord systems

    Get PDF
    Over the past two decades, Greenland’s tidewater glaciers have dramatically retreated, thinned and accelerated, contributing significantly to sea level rise. This change in glacier behaviour is thought to have been triggered by increasing atmospheric and ocean temperatures, and mass loss from Greenland’s tidewater glaciers is predicted to continue this century. Substantial research during this period of rapid glacier change has improved our understanding of Greenland’s glacier-fjord systems. However, many of the processes operating in these systems that ultimately control the response of tidewater glaciers to changing atmospheric and oceanic conditions are poorly understood. This thesis combines modelling and remote sensing to investigate two particularly poorly-understood components of glacier-fjord systems, with the ultimate aim of improving understanding of recent glacier behaviour and constraining the stability of the ice sheet in a changing climate. The research presented in this thesis begins with an investigation into the dominant controls on the seasonal dynamics of contrasting tidewater glaciers draining the Greenland Ice Sheet. To do this, high resolution estimates of ice velocity were generated and compared with detailed observations and modelling of the principal controls on seasonal glacier flow, including terminus position, ice mĂ©lange presence or absence, ice sheet surface melting and runoff, and plume presence or absence. These data revealed characteristic seasonal and shorter-term changes in ice velocity at each of the study glaciers in more detail than was available from previous remote sensing studies. Of all the environmental controls examined, seasonal evolution of subglacial hydrology (as inferred from plume observations and modelling) was best able to explain the observed ice flow variations, despite differences in geometry and flow of the study glaciers. The inferred relationships between subglacial hydrology and ice dynamics were furthermore entirely consistent with process-understanding developed at land-terminating sectors of the ice sheet. This investigation provides a more detailed understanding of tidewater glacier subglacial hydrology and its interaction with ice dynamics than was previously available and suggests that interannual variations in meltwater supply may have limited influence on annually averaged ice velocity. The thesis then shifts its attention from the glacier part of the system into the fjords, focusing on the interaction between icebergs, fjord circulation and fjord water properties. This focus on icebergs is motivated by recent research revealing that freshwater produced by iceberg melting constitutes an important component of fjord freshwater budgets, yet the impact of this freshwater on fjords was unknown. To investigate this, a new model for iceberg-ocean interaction is developed and incorporated into an ocean circulation model. This new model is first applied to Sermilik Fjord — a large fjord in east Greenland that hosts Helheim Glacier, one of the largest tidewater glaciers draining the ice sheet — to further constrain iceberg freshwater production and to quantify the influence of iceberg melting on fjord circulation and water properties. These investigations reveal that iceberg freshwater flux increases with ice sheet runoff raised to the power ~0.1 and ranges from ~500-2500 mÂł s⁻Âč during summer, with ~40% of that produced below the pycnocline. It is also shown that icebergs substantially modify the temperature and velocity structure of Sermilik Fjord, causing 1-5°C cooling in the upper ~100 m and invigorating fjord circulation, which in turn causes a 10-40% increase in oceanic heat flux towards Helheim Glacier. This research highlights the important role of icebergs in Greenland’s iceberg congested fjords and therefore the need to include them in future studies examining ice sheet – ocean interaction. Having investigated the effect of icebergs on fjord circulation in a realistic setting, this thesis then characterises the effect of submarine iceberg melting on water properties near the ice sheet – ocean interface by applying the new model to a range of idealised scenarios. This near-glacier region is one which is crucial for constraining ocean-driven retreat of tidewater glaciers, but which is poorly-understood. The simulations show that icebergs are important modifiers of glacier-adjacent water properties, generally acting to reduce vertical variations in water temperature. The iceberg-induced temperature changes will generally increase submarine melt rates at mid-depth and decrease rates at the surface, with less pronounced effects at greater depth. This highlights another mechanism by which iceberg melting can affect ice sheet – ocean interaction and emphasises the need to account for iceberg-ocean interaction when simulating ocean-driven retreat of Greenland’s tidewater glaciers. In summary, this thesis has helped to provide a deeper understanding of two poorly-understood components of Greenland’s tidewater glacier-fjord systems: (i) interactions between subglacial hydrology and ice velocity, and; (ii) iceberg-ocean interaction. This research has enabled more precise interpretations of past glacier behaviour and can be used to inform model development that will help constrain future ice sheet mass loss in response to a changing climate."I must express my gratitude to the University of St Andrews and to the Scottish Alliance for Geoscience, Environment and Society (SAGES) for funding and supporting me as a research student."-- Fundin

    Reservoir landslide monitoring and mechanism analysis based on UAV photogrammetry and sub-pixel offset tracking: a case study of Wulipo landslide

    Get PDF
    Introduction: Reservoir landslides undergo large deformations during the early stages of impoundment and maintain long-term persistent deformations during the operational period of the reservoir. The management of reservoir landslides mostly focuses on the early identification, risk assessment during the large deformations, and long-sequence monitoring during long-term persistent deformations, which requires sufficient continuity and integrity of the landslide monitoring data.Methods: Taking the Wulipo (WLP) landslide in Baihetan Reservoir as example, this paper proposes a reservoir landslide monitoring method that integrates field survey, unmanned aerial vehicle (UAV) photogrammetry and global navigation satellite system (GNSS) monitoring, which can effectively eliminate the practical monitoring gaps between multiple monitoring methods and improve the continuity and completeness of monitoring data.Results and discussion: First, this study determined the initiation time of the landslide through the field investigation and collected five period of UAV data to analyze the overall displacement vector of the WLP landslide using sub-pixel offset tracking (SPOT). On the basis of the above data, we compensated for the missing data in GNSS system due to the practical monitoring vacancies by combining the field survey and the landslide-water level relationship. Based on these monitoring data, this paper points out that the WLP landslide is a buoyancy-driven landslide, and whether or not accelerated deformation will occur is related to the maximum reservoir water level. Finally, this study analyzed and discussed the applicability of UAV photogrammetry for reservoir landslide monitoring in the absence of ground control points (GCPs), and concluded that this method can be quickly and flexibly applied to the stage of large deformation of reservoir landslides

    Seasonal and Multi-year Variability of Ice Dynamics of South Croker Bay Glacier, Devon Ice Cap, Canadian Arctic from 2015 to 2021

    Get PDF
    The effects of climate change have already been observed across the globe, impacting weather, ecosystems, and society. These effects have been most pronounced in polar regions, which experience warming at a faster rate than other latitudes due to positive feedbacks resulting from reduced ice and snow cover. Compared to the 1.1oC of warming around the globe since the 1980s, the Arctic has warmed by 3oC. Glaciers and ice caps are of particular concern as they have profound impacts on water resources, shipping and travel routes, and global sea level rise. As such, glacier dynamics play a key role in understanding effects on the global system. The Canadian High Arctic in particular has doubled in rates of mass loss since the 1990s, which is of great concern as it is the third largest contributor to global sea level rise after Antarctica and Greenland. While glacier flow within the region has been studied, some glaciers have been observed to not align with current understandings of dynamics. The subject of this study, South Croker Bay Glacier, located on Devon Ice Cap in Nunavut, Canada has exhibited velocity variability on oscillating temporal scales which do not align with surging, pulsing, or consistent acceleration explanations. The primary objective of this thesis was to create a dense record of velocities derived from TerraSAR-X imagery every 11 days from 2015 to 2021 to gain insight into seasonal and multi-annual velocity variability. As a result, a near-continuous velocity record of South Croker Bay Glacier has been created, highlighting a shift in velocities which occurred during the winter of 2018/19. The second objective was to explore the potential drivers of the observed velocity variability, which were hydrology, sea ice buttressing, and bed topography. Looking at the spatial propagation of acceleration and terminus position as well, it is concluded that the variability is not driven by surge- or pulse-type mechanisms. Instead, it is suggested that the driver of the observed variability on the glacier is the result of the evolving configuration of the hydrological network. This is supported by surface air temperature and surface lake area records during the study period. Finally, the third objective was to assess the feasibility of utilizing remote sensing for seasonal variability detection. Based on the analysis, the method was successful in the proposed objectives, creating a record of velocities that was not previously available for South Croker Bay Glacier

    Polarimetric airborne scientific instrument, mark 2, an ice‐sounding airborne synthetic aperture radar for subglacial 3D imagery

    Get PDF
    Polarimetric Airborne Scientific INstrument, mark 2 (PASIN2) is a 150 MHz coherent pulsed radar with the purpose of deep ice sounding for bedrock, subglacial channels and ice-water interface detection in Antarctica. It is designed and operated by the British Antarctic Survey from 2014. With multiple antennas, oriented along and across-track, for transmission and reception, it enables polarimetric 3D estimation of the ice base with a single pass, reducing the gridding density of the survey paths. The off-line data processing stream consists of channel calibration; 2D synthetic aperture radar (SAR) imaging based on back-projection, for along-track and range dimensions; and finally, a direction of arrival estimation (DoA) of the remaining across-track angle, by modifying the non-linear MUSIC algorithm. Calibration flights, during the Antarctic Summer campaigns in 16/17 and 19/20 seasons, assessed and validated the instrument and processing performances. Imaging flights over ice streams and ice shelves close to grounding lines demonstrate the 3D sensing capabilities. By resolving directional ambiguities and accounting for reflector across-track location, the true ice thickness and bed elevation are obtained, thereby removing the error of the usual assumption of vertical DoA, that greatly influence the output of flow models of ice dynamics

    Evaluation of Multi-frequency Synthetic Aperture Radar for Subsurface Archaeological Prospection in Arid Environments

    Full text link
    The discovery of the subsurface paleochannels in the Saharan Desert with the 1981 Shuttle Imaging Radar (SIR-A) sensor was hugely significant in the field of synthetic aperture radar (SAR) remote sensing. Although previous studies had indicated the ability of microwaves to penetrate the earth’s surface in arid environments, this was the first applicable instance of subsurface imaging using a spaceborne sensor. And the discovery of the ‘radar rivers’ with associated archaeological evidence in this inhospitable environment proved the existence of an earlier less arid paleoclimate that supported past populations. Since the 1980’s SAR subsurface prospection in arid environments has progressed, albeit primarily in the fields of hydrology and geology, with archaeology being investigated to a lesser extent. Currently there is a lack of standardised methods for data acquisition and processing regarding subsurface imaging, difficulties in image interpretation and insufficient supporting quantitative verification. These barriers keep SAR technology from becoming as integral as other remote sensing techniques in archaeological practice The main objective of this thesis is to undertake a multi-frequency SAR analysis across different site types in arid landscapes to evaluate and enhance techniques for analysing SAR within the context of archaeological subsurface prospection. The analysis and associated fieldwork aim to address the gap in the literature regarding field verification of SAR image interpretation and contribute to the understanding of SAR microwave penetration in arid environments. The results presented in this thesis demonstrate successful subsurface imaging of subtle feature(s) at the site of ‘Uqdat al-Bakrah, Oman with X-band data. Because shorter wavelengths are often ignored due to their limited penetration depths as compared to the C-band or L-band data, the effectiveness of X-band sensors in archaeological prospection at this site is significant. In addition, the associated ground penetrating radar and excavation fieldwork undertaken at ‘Uqdat al-Bakrah confirm the image interpretation and support the quantitative information regarding microwave penetration

    Constraints on Subglacial Melt Fluxes from Observations of Active Subglacial Lake Recharge

    Get PDF
    Active subglacial lakes provide a rare glimpse of the subglacial environment and hydrological processes at play. Several studies contributed to establishing active subglacial lake inventories and document lake drainage and connection, but few focused on the period between lake drainage when the melt production and transport contribute to the refilling of these lakes. In this study, we employ high-resolution CryoSat-2 altimetry data from 2010 to 2021 to compile an inventory of recharging lakes across Antarctica. We extract recharge rates from these lakes, which serve as a lower limit on subglacial melt production. These recharge rates are compared against predictions obtained by routing modelled subglacial meltwater at the ice-sheet's base. Our findings indicate that modelled recharge rates are consistent with observations in all but one of the investigated lakes, providing a lower bound on geothermal heat fluxes. Lake Cook E2 displays recharge rates far exceeding predictions, indicating that processes are taking place that are currently unaccounted for. Considering recharge in hydrologically connected lake networks instead of individually provides a stricter constraint on melt production. Recharge rates extracted from the Thwaites Lake system suggest that subglacial melt production has been underestimated.ISSN:0022-1430ISSN:1727-565

    Assessment of sea-level variability for the Emilia-Romagna coastal area in the framework of the Mediterranean Sea

    Get PDF
    Sea–level change is one of the ocean characteristics closely connected to climate change. Understanding its variation is essential since a large portion of the world’s population is located in low–lying locations. Two main techniques are employed to measure sea level: satellite altimetry and tide gauges. Satellite altimetry monitors sea–level relative to a geocentric reference, is unaffected by crustal processes and covers nearly the entire surface of the oceans since 1993. Conversely, tide gauges measure sea level at specific coastal locations and relative to a local ground benchmark, therefore are impacted by vertical land movements. In this study, the linear and non–linear geocentric and relative sea–level trends along the Emilia–Romagna coast (Northern Italy) have been analyzed over different periods. In order to assess the local sea–level variability, data from satellite altimetry and tide gauges have been compared over a common time interval (1993–2019), hence disentangling the contribute of vertical land movements. Non–linearity has been also evaluated at the broader scale of the Mediterranean Sea, in order to depict the main variability in geocentric sea–level trends from regional to sub–basin scale. Furthermore, the anthropogenic and natural influence at the river basin scale has been addressed, in order to shed light on the factors inducing the drastic reduction of riverine sediment supply to the Emilia–Romagna coast over the period 1920–2020. The findings of this analysis indicate that the sediment delivery reduction to the coast by rivers has been driven by several anthropogenic processes, acting on various spatiotemporal scales. Moreover, the local absolute sea–level trend is far from linear and appear "contaminated" by the presence of natural oscillations that act at the multi–decadal, quasi–decadal and inter–annual scale, mainly driven by both large–scale climatic modes and variations in local oceanography

    Polarimetric airborne scientific instrument, mark 2, an ice‐sounding airborne synthetic aperture radar for subglacial 3D imagery

    Get PDF
    Polarimetric Airborne Scientific INstrument, mark 2 (PASIN2) is a 150 MHz coherent pulsed radar with the purpose of deep ice sounding for bedrock, subglacial channels and ice‐water interface detection in Antarctica. It is designed and operated by the British Antarctic Survey from 2014. With multiple antennas, oriented along and across‐track, for transmission and reception, it enables polarimetric 3D estimation of the ice base with a single pass, reducing the gridding density of the survey paths. The off‐line data processing stream consists of channel calibration; 2D synthetic aperture radar (SAR) imaging based on back‐projection, for along‐track and range dimensions; and finally, a direction of arrival estimation (DoA) of the remaining across‐track angle, by modifying the non‐linear MUSIC algorithm. Calibration flights, during the Antarctic Summer campaigns in 16/17 and 19/20 seasons, assessed and validated the instrument and processing performances. Imaging flights over ice streams and ice shelves close to grounding lines demonstrate the 3D sensing capabilities. By resolving directional ambiguities and accounting for reflector across‐track location, the true ice thickness and bed elevation are obtained, thereby removing the error of the usual assumption of vertical DoA, that greatly influence the output of flow models of ice dynamics

    Modes of Antarctic tidal grounding line migration revealed by Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) laser altimetry

    Get PDF
    Tide-forced short-term migration of the grounding line (GL) of Antarctic ice shelves can impact ice dynamics at the ice sheet margins and obscures assessments of long-term GL advance or retreat. However, the magnitude of tidally induced GL migration is poorly known, and the spatial patterns and modes of variability are not well characterised. Here we develop and apply a technique that uses Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) repeat-track laser altimetry to locate the inland limit of tidal ice shelf flexure for each sampled tide, enabling the magnitude and temporal variability of tidal GL migration to be resolved. We demonstrate its application at an ice plain north of BungenstockrĂŒcken, in a region of the southern Ronne Ice Shelf subject to large ocean tides. We observe a 1300 km2 area of ephemeral grounding over which the GL migrates by up to 15 km between low and high tide and identify four distinct modes of migration: linear, asymmetric, threshold and hysteresis. The short-term movement of the GL dominates any long-term migration signal in this location, and the distribution of GL positions and modes contains information about spatial variability in the ice–bed interface. We discuss the impact of extreme tidal GL migration on ice shelf–ocean–subglacial systems in Antarctica and make recommendations for how GLs should be more precisely defined and documented in future by the community.</p

    Coupled surface to deep Earth processes: Perspectives from TOPO-EUROPE with an emphasis on climate- and energy-related societal challenges

    Get PDF
    Understanding the interactions between surface and deep Earth processes is important for research in many diverse scientific areas including climate, environment, energy, georesources and biosphere. The TOPO-EUROPE initiative of the International Lithosphere Program serves as a pan-European platform for integrated surface and deep Earth sciences, synergizing observational studies of the Earth structure and fluxes on all spatial and temporal scales with modelling of Earth processes. This review provides a survey of scientific developments in our quantitative understanding of coupled surface-deep Earth processes achieved through TOPO-EUROPE. The most notable innovations include (1) a process-based understanding of the connection of upper mantle dynamics and absolute plate motion frames; (2) integrated models for sediment source-to-sink dynamics, demonstrating the importance of mass transfer from mountains to basins and from basin to basin; (3) demonstration of the key role of polyphase evolution of sedimentary basins, the impact of pre-rift and pre-orogenic structures, and the evolution of subsequent lithosphere and landscape dynamics; (4) improved conceptual understanding of the temporal evolution from back-arc extension to tectonic inversion and onset of subduction; (5) models to explain the integrated strength of Europe's lithosphere; (6) concepts governing the interplay between thermal upper mantle processes and stress-induced intraplate deformation; (7) constraints on the record of vertical motions from high-resolution data sets obtained from geo-thermochronology for Europe's topographic evolution; (8) recognition and quantifications of the forcing by erosional and/or glacial-interglacial surface mass transfer on the regional magmatism, with major implications for our understanding of the carbon cycle on geological timescales and the emerging field of biogeodynamics; and (9) the transfer of insights obtained on the coupling of deep Earth and surface processes to the domain of geothermal energy exploration. Concerning the future research agenda of TOPO-EUROPE, we also discuss the rich potential for further advances, multidisciplinary research and community building across many scientific frontiers, including research on the biosphere, climate and energy. These will focus on obtaining a better insight into the initiation and evolution of subduction systems, the role of mantle plumes in continental rifting and (super)continent break-up, and the deformation and tectonic reactivation of cratons; the interaction between geodynamic, surface and climate processes, such as interactions between glaciation, sea level change and deep Earth processes; the sensitivity, tipping points, and spatio-temporal evolution of the interactions between climate and tectonics as well as the role of rock melting and outgassing in affecting such interactions; the emerging field of biogeodynamics, that is the impact of coupled deep Earth – surface processes on the evolution of life on Earth; and tightening the connection between societal challenges regarding renewable georesources, climate change, natural geohazards, and novel process-understanding of the Earth system
    • 

    corecore