23 research outputs found

    Upper Bounds on the Number of Errors Corrected by the Koetter–Vardy Algorithm

    Get PDF

    Hierarchical and High-Girth QC LDPC Codes

    Full text link
    We present a general approach to designing capacity-approaching high-girth low-density parity-check (LDPC) codes that are friendly to hardware implementation. Our methodology starts by defining a new class of "hierarchical" quasi-cyclic (HQC) LDPC codes that generalizes the structure of quasi-cyclic (QC) LDPC codes. Whereas the parity check matrices of QC LDPC codes are composed of circulant sub-matrices, those of HQC LDPC codes are composed of a hierarchy of circulant sub-matrices that are in turn constructed from circulant sub-matrices, and so on, through some number of levels. We show how to map any class of codes defined using a protograph into a family of HQC LDPC codes. Next, we present a girth-maximizing algorithm that optimizes the degrees of freedom within the family of codes to yield a high-girth HQC LDPC code. Finally, we discuss how certain characteristics of a code protograph will lead to inevitable short cycles, and show that these short cycles can be eliminated using a "squashing" procedure that results in a high-girth QC LDPC code, although not a hierarchical one. We illustrate our approach with designed examples of girth-10 QC LDPC codes obtained from protographs of one-sided spatially-coupled codes.Comment: Submitted to IEEE Transactions on Information THeor

    Near-capacity fixed-rate and rateless channel code constructions

    No full text
    Fixed-rate and rateless channel code constructions are designed for satisfying conflicting design tradeoffs, leading to codes that benefit from practical implementations, whilst offering a good bit error ratio (BER) and block error ratio (BLER) performance. More explicitly, two novel low-density parity-check code (LDPC) constructions are proposed; the first construction constitutes a family of quasi-cyclic protograph LDPC codes, which has a Vandermonde-like parity-check matrix (PCM). The second construction constitutes a specific class of protograph LDPC codes, which are termed as multilevel structured (MLS) LDPC codes. These codes possess a PCM construction that allows the coexistence of both pseudo-randomness as well as a structure requiring a reduced memory. More importantly, it is also demonstrated that these benefits accrue without any compromise in the attainable BER/BLER performance. We also present the novel concept of separating multiple users by means of user-specific channel codes, which is referred to as channel code division multiple access (CCDMA), and provide an example based on MLS LDPC codes. In particular, we circumvent the difficulty of having potentially high memory requirements, while ensuring that each user’s bits in the CCDMA system are equally protected. With regards to rateless channel coding, we propose a novel family of codes, which we refer to as reconfigurable rateless codes, that are capable of not only varying their code-rate but also to adaptively modify their encoding/decoding strategy according to the near-instantaneous channel conditions. We demonstrate that the proposed reconfigurable rateless codes are capable of shaping their own degree distribution according to the nearinstantaneous requirements imposed by the channel, but without any explicit channel knowledge at the transmitter. Additionally, a generalised transmit preprocessing aided closed-loop downlink multiple-input multiple-output (MIMO) system is presented, in which both the channel coding components as well as the linear transmit precoder exploit the knowledge of the channel state information (CSI). More explicitly, we embed a rateless code in a MIMO transmit preprocessing scheme, in order to attain near-capacity performance across a wide range of channel signal-to-ratios (SNRs), rather than only at a specific SNR. The performance of our scheme is further enhanced with the aid of a technique, referred to as pilot symbol assisted rateless (PSAR) coding, whereby a predetermined fraction of pilot bits is appropriately interspersed with the original information bits at the channel coding stage, instead of multiplexing pilots at the modulation stage, as in classic pilot symbol assisted modulation (PSAM). We subsequently demonstrate that the PSAR code-aided transmit preprocessing scheme succeeds in gleaning more information from the inserted pilots than the classic PSAM technique, because the pilot bits are not only useful for sounding the channel at the receiver but also beneficial for significantly reducing the computational complexity of the rateless channel decoder

    From Cages to Trapping Sets and Codewords: A Technique to Derive Tight Upper Bounds on the Minimum Size of Trapping Sets and Minimum Distance of LDPC Codes

    Full text link
    Cages, defined as regular graphs with minimum number of nodes for a given girth, are well-studied in graph theory. Trapping sets are graphical structures responsible for error floor of low-density parity-check (LDPC) codes, and are well investigated in coding theory. In this paper, we make connections between cages and trapping sets. In particular, starting from a cage (or a modified cage), we construct a trapping set in multiple steps. Based on the connection between cages and trapping sets, we then use the available results in graph theory on cages and derive tight upper bounds on the size of the smallest trapping sets for variable-regular LDPC codes with a given variable degree and girth. The derived upper bounds in many cases meet the best known lower bounds and thus provide the actual size of the smallest trapping sets. Considering that non-zero codewords are a special case of trapping sets, we also derive tight upper bounds on the minimum weight of such codewords, i.e., the minimum distance, of variable-regular LDPC codes as a function of variable degree and girth

    ADVANCED SIGNAL PROCESSING FOR MAGNETIC RECORDING ON PERPENDICULARLY MAGNETIZED MEDIA

    Get PDF
    In magnetic recording channels (MRCs) the readback signal is corrupted by many kinds of impairments, such as electronic noise, media noise, intersymbol interference (ISI), inter-track interference (ITI) and different types of erasures. The growth in demand for the information storage, leads to the continuing pursuit of higher recording density, which enhances the impact of the noise contamination and makes the recovery of the user data from magnetic media more challenging. In this dissertation, we develop advanced signal processing techniques to mitigate these impairments in MRCs.We focus on magnetic recording on perpendicularly magnetized media, from the state-of-the art continuous media to bit-patterned media, which is a possible choice for the next generation of products. We propose novel techniques for soft-input soft-output channel detection, soft iterative decoding of low-density parity-check (LDPC) codes as well as LDPC code designs for MRCs.First we apply the optimal subblock-by-subblock detector (OBBD) to nonbinary LDPC coded perpendicular magnetic recording channels (PMRCs) and derive a symbol-based detector to do the turbo equalization exactly. Second, we propose improved belief-propagation (BP) decoders for both binary and nonbinary LDPC coded PMRCs, which provide significant gains over the standard BP decoder. Third, we introduce novel LDPC code design techniques to construct LDPC codes with fewer short cycles. Performance improvement is achieved by applying the new LDPC codes to PMRCs. Fourth, we do a substantial investigation on Reed-Solomon (RS) plus LDPC coded PMRCs. Finally, we continue our research on bit-patterned magnetic recording (BPMR) channels at extremely high recording densities. A multi-track detection technique is proposed to mitigate the severe ITI in BPMR channels. The multi-track detection with both joint-track and two-dimensional (2D) equalization provide significant performance improvement compared to conventional equalization and detection methods

    Conception Avancée des codes LDPC binaires pour des applications pratiques

    Get PDF
    The design of binary LDPC codes with low error floors is still a significant problem not fully resolved in the literature. This thesis aims to design optimal/optimized binary LDPC codes. We have two main contributions to build the LDPC codes with low error floors. Our first contribution is an algorithm that enables the design of optimal QC-LDPC codes with maximum girth and mini-mum sizes. We show by simulations that our algorithm reaches the minimum bounds for regular QC-LDPC codes (3, d c ) with low d c . Our second contribution is an algorithm that allows the design optimized of regular LDPC codes by minimizing dominant trapping-sets/expansion-sets. This minimization is performed by a predictive detection of dominant trapping-sets/expansion-sets defined for a regular code C(d v , d c ) of girth g t . By simulations on different rate codes, we show that the codes designed by minimizing dominant trapping-sets/expansion-sets have better performance than the designed codes without taking account of trapping-sets/expansion-sets. The algorithms we proposed are based on the generalized RandPEG. These algorithms take into account non-cycles seen in the case of quasi-cyclic codes to ensure the predictions.La conception de codes LDPC binaires avec un faible plancher d’erreurs est encore un problème considérable non entièrement résolu dans la littérature. Cette thèse a pour objectif la conception optimale/optimisée de codes LDPC binaires. Nous avons deux contributions principales pour la construction de codes LDPC à faible plancher d’erreurs. Notre première contribution est un algorithme qui permet de concevoir des codes QC-LDPC optimaux à large girth avec les tailles minimales. Nous montrons par des simulations que notre algorithme atteint les bornes minimales fixées pour les codes QC-LDPC réguliers (3, d c ) avec d c faible. Notre deuxième contribution est un algorithme qui permet la conception optimisée des codes LDPC réguliers en minimisant les trapping-sets/expansion-sets dominants(es). Cette minimisation s’effectue par une détection prédictive des trapping-sets/expansion-sets dominants(es) définies pour un code régulier C(d v , d c ) de girth gt . Par simulations sur des codes de rendement différent, nous montrons que les codes conçus en minimisant les trapping-sets/expansion-sets dominants(es) ont de meilleures performances que les codes conçus sans la prise en compte des trapping-sets/expansion-sets. Les algorithmes que nous avons proposés se basent sur le RandPEG généralisé. Ces algorithmes prennent en compte les cycles non-vus dans le cas des codes quasi-cycliques pour garantir les prédictions

    LDPC-coded modulation for transmission over AWGN and flat rayleigh fading channels

    Get PDF
    La modulation codée est une technique de transmission efficace en largeur de bande qui intègre le codage de canal et la modulation en une seule entité et ce, afin d'améliorer les performances tout en conservant la même efficacité spectrale comparé à la modulation non codée. Les codes de parité à faible densité (low-density parity-check codes, LDPC) sont les codes correcteurs d'erreurs les plus puissants et approchent la limite de Shannon, tout en ayant une complexité de décodage relativement faible. L'idée de combiner les codes LDPC et la modulation efficace en largeur de bande a donc été considérée par de nombreux chercheurs. Dans ce mémoire, nous étudions une méthode de modulation codée à la fois puissante et efficace en largeur de bande, ayant d'excellentes performances de taux d'erreur binaire et une complexité d'implantation faible. Ceci est réalisé en utilisant un encodeur rapide, un décoder de faible complexité et aucun entrelaceur. Les performances du système proposé pour des transmissions sur un canal additif gaussien blanc et un canal à évanouissements plats de Rayleigh sont évaluées au moyen de simulations. Les résultats numériques montrent que la méthode de modulation codée utilisant la modulation d'amplitude en quadrature à M niveaux (M-QAM) peut atteindre d'excellentes performances pour toute une gamme d'efficacité spectrale. Une autre contribution de ce mémoire est une méthode simple pour réaliser une modulation codée adaptative avec les codes LDPC pour la transmission sur des canaux à évanouissements plats et lents de Rayleigh. Dans cette méthode, six combinaisons de paires encodeur modulateur sont employées pour une adaptation trame par trame. L'efficacité spectrale moyenne varie entre 0.5 et 5 bits/s/Hz lors de la transmission. Les résultats de simulation montrent que la modulation codée adaptative avec les codes LDPC offre une meilleure efficacité spectrale tout en maintenant une performance d'erreur acceptable
    corecore