77 research outputs found

    Hierarchical and High-Girth QC LDPC Codes

    Full text link
    We present a general approach to designing capacity-approaching high-girth low-density parity-check (LDPC) codes that are friendly to hardware implementation. Our methodology starts by defining a new class of "hierarchical" quasi-cyclic (HQC) LDPC codes that generalizes the structure of quasi-cyclic (QC) LDPC codes. Whereas the parity check matrices of QC LDPC codes are composed of circulant sub-matrices, those of HQC LDPC codes are composed of a hierarchy of circulant sub-matrices that are in turn constructed from circulant sub-matrices, and so on, through some number of levels. We show how to map any class of codes defined using a protograph into a family of HQC LDPC codes. Next, we present a girth-maximizing algorithm that optimizes the degrees of freedom within the family of codes to yield a high-girth HQC LDPC code. Finally, we discuss how certain characteristics of a code protograph will lead to inevitable short cycles, and show that these short cycles can be eliminated using a "squashing" procedure that results in a high-girth QC LDPC code, although not a hierarchical one. We illustrate our approach with designed examples of girth-10 QC LDPC codes obtained from protographs of one-sided spatially-coupled codes.Comment: Submitted to IEEE Transactions on Information THeor

    LDPC Codes

    Get PDF

    New Classes of Partial Geometries and Their Associated LDPC Codes

    Full text link
    The use of partial geometries to construct parity-check matrices for LDPC codes has resulted in the design of successful codes with a probability of error close to the Shannon capacity at bit error rates down to 10−1510^{-15}. Such considerations have motivated this further investigation. A new and simple construction of a type of partial geometries with quasi-cyclic structure is given and their properties are investigated. The trapping sets of the partial geometry codes were considered previously using the geometric aspects of the underlying structure to derive information on the size of allowable trapping sets. This topic is further considered here. Finally, there is a natural relationship between partial geometries and strongly regular graphs. The eigenvalues of the adjacency matrices of such graphs are well known and it is of interest to determine if any of the Tanner graphs derived from the partial geometries are good expanders for certain parameter sets, since it can be argued that codes with good geometric and expansion properties might perform well under message-passing decoding.Comment: 34 pages with single column, 6 figure

    New Combinatorial Construction Techniques for Low-Density Parity-Check Codes and Systematic Repeat-Accumulate Codes

    Full text link
    This paper presents several new construction techniques for low-density parity-check (LDPC) and systematic repeat-accumulate (RA) codes. Based on specific classes of combinatorial designs, the improved code design focuses on high-rate structured codes with constant column weights 3 and higher. The proposed codes are efficiently encodable and exhibit good structural properties. Experimental results on decoding performance with the sum-product algorithm show that the novel codes offer substantial practical application potential, for instance, in high-speed applications in magnetic recording and optical communications channels.Comment: 10 pages; to appear in "IEEE Transactions on Communications

    LDPC codes from voltage graphs

    Get PDF
    Several well-known structure-based constructions of LDPC codes, for example codes based on permutation and circulant matrices and in particular, quasi-cyclic LDPC codes, can be interpreted via algebraic voltage assignments. We explain this connection and show how this idea from topological graph theory can be used to give simple proofs of many known properties of these codes. In addition, the notion of abelianinevitable cycle is introduced and the subgraphs giving rise to these cycles are classified. We also indicate how, by using more sophisticated voltage assignments, new classes of good LDPC codes may be obtained
    • …
    corecore