571 research outputs found

    Two-stage wireless network emulation

    Get PDF
    Testing and deploying mobile wireless networks and applications are very challenging tasks, due to the network size and administration as well as node mobility management. Well known simulation tools provide a more flexible environment but they do not run in real time and they rely on models of the developed system rather than on the system itself. Emulation is a hybrid approach allowing real application and traffic to be run over a simulated network, at the expense of accuracy when the number of nodes is too important. In this paper, emulation is split in two stages : first, the simulation of network conditions is precomputed so that it does not undergo real-time constraints that decrease its accuracy ; second, real applications and traffic are run on an emulation platform where the precomputed events are scheduled in soft real-time. This allows the use of accurate models for node mobility, radio signal propagation and communication stacks. An example shows that a simple situation can be simply tested with real applications and traffic while relying on accurate models. The consistency between the simulation results and the emulated conditions is also illustrated

    The AURORA Gigabit Testbed

    Get PDF
    AURORA is one of five U.S. networking testbeds charged with exploring applications of, and technologies necessary for, networks operating at gigabit per second or higher bandwidths. The emphasis of the AURORA testbed, distinct from the other four testbeds, BLANCA, CASA, NECTAR, and VISTANET, is research into the supporting technologies for gigabit networking. Like the other testbeds, AURORA itself is an experiment in collaboration, where government initiative (in the form of the Corporation for National Research Initiatives, which is funded by DARPA and the National Science Foundation) has spurred interaction among pre-existing centers of excellence in industry, academia, and government. AURORA has been charged with research into networking technologies that will underpin future high-speed networks. This paper provides an overview of the goals and methodologies employed in AURORA, and points to some preliminary results from our first year of research, ranging from analytic results to experimental prototype hardware. This paper enunciates our targets, which include new software architectures, network abstractions, and hardware technologies, as well as applications for our work

    Gigabit Networks

    Get PDF
    This chapter summarizes what we have learned in the past decade of research into extremely high throughput networks. Such networks are colloquially referred to as Gigabit Networks in reference to the billion bit per second throughput regime they now operate in. The engineering challenges are in the integration of fast transmission systems and high-performance engineering workstations

    BonFIRE: A multi-cloud test facility for internet of services experimentation

    Get PDF
    BonFIRE offers a Future Internet, multi-site, cloud testbed, targeted at the Internet of Services community, that supports large scale testing of applications, services and systems over multiple, geographically distributed, heterogeneous cloud testbeds. The aim of BonFIRE is to provide an infrastructure that gives experimenters the ability to control and monitor the execution of their experiments to a degree that is not found in traditional cloud facilities. The BonFIRE architecture has been designed to support key functionalities such as: resource management; monitoring of virtual and physical infrastructure metrics; elasticity; single document experiment descriptions; and scheduling. As for January 2012 BonFIRE release 2 is operational, supporting seven pilot experiments. Future releases will enhance the offering, including the interconnecting with networking facilities to provide access to routers, switches and bandwidth-on-demand systems. BonFIRE will be open for general use late 2012

    How To Build a Better Testbed: Lessons From a Decade of Network Experiments on Emulab

    Get PDF
    International audienceThe Emulab network testbed provides an environment in which researchers and educators can evaluate networked systems. Available to the public since 2000, Emulab is used by thousands of experimenters at hundreds of institutions around the world, and the research conducted on it has lead to hundreds of publications. The original Emulab facility at the University of Utah has been replicated at dozens of other sites. The physical design of the Emulab facility, and many other testbeds like it, has been based on the facility operators' expectations regarding user needs and behavior. If operators' assumptions are incorrect, the resulting facility can exhibit inefficient use patterns and sub-optimal resource allocation. Our study, the first of its kind, gains insight into the needs and behaviors of networking researchers by analyzing more than 500,000 topologies from 13,000 experiments submitted to Emulab. Using this dataset, we re-visit the assumptions that went into the physical design of the Emulab facility and consider improvements to it. Through extensive simulations with real workloads, we evaluate alternative testbeds designs for their ability to improve testbed utilization and reduce hardware costs
    corecore