20 research outputs found

    Higher-Order Global Regularity of an Inviscid Voigt-Regularization of the Three-Dimensional Inviscid Resistive Magnetohydrodynamic Equations

    Full text link
    We prove existence, uniqueness, and higher-order global regularity of strong solutions to a particular Voigt-regularization of the three-dimensional inviscid resistive Magnetohydrodynamic (MHD) equations. Specifically, the coupling of a resistive magnetic field to the Euler-Voigt model is introduced to form an inviscid regularization of the inviscid resistive MHD system. The results hold in both the whole space \nR^3 and in the context of periodic boundary conditions. Weak solutions for this regularized model are also considered, and proven to exist globally in time, but the question of uniqueness for weak solutions is still open. Since the main purpose of this line of research is to introduce a reliable and stable inviscid numerical regularization of the underlying model we, in particular, show that the solutions of the Voigt regularized system converge, as the regularization parameter \alpha\maps0, to strong solutions of the original inviscid resistive MHD, on the corresponding time interval of existence of the latter. Moreover, we also establish a new criterion for blow-up of solutions to the original MHD system inspired by this Voigt regularization. This type of regularization, and the corresponding results, are valid for, and can also be applied to, a wide class of hydrodynamic models

    Long-time Behavior of a Two-layer Model of Baroclinic Quasi-geostrophic Turbulence

    Full text link
    We study a viscous two-layer quasi-geostrophic beta-plane model that is forced by imposition of a spatially uniform vertical shear in the eastward (zonal) component of the layer flows, or equivalently a spatially uniform north-south temperature gradient. We prove that the model is linearly unstable, but that non-linear solutions are bounded in time by a bound which is independent of the initial data and is determined only by the physical parameters of the model. We further prove, using arguments first presented in the study of the Kuramoto-Sivashinsky equation, the existence of an absorbing ball in appropriate function spaces, and in fact the existence of a compact finite-dimensional attractor, and provide upper bounds for the fractal and Hausdorff dimensions of the attractor. Finally, we show the existence of an inertial manifold for the dynamical system generated by the model's solution operator. Our results provide rigorous justification for observations made by Panetta based on long-time numerical integrations of the model equations
    corecore