212 research outputs found

    Getting a grasp on tag collections by visualising tag clusters based on higher-order co-occurrences

    No full text
    Tagging learning resources in repositories or web portals offers a way to meaningfully describe these resources. The more tags there are, however, the more di cult it is to find one's way around the repository, especially when they are user-generated free-text tags. This paper therefore presents a visualisation of tag clusters based on higher-order co-occurrences that allows users of such repositories a plain but simple way of exploring them in an intuitive manner

    Building a semantic search engine with games and crowdsourcing

    Get PDF
    Semantic search engines aim at improving conventional search with semantic information, or meta-data, on the data searched for and/or on the searchers. So far, approaches to semantic search exploit characteristics of the searchers like age, education, or spoken language for selecting and/or ranking search results. Such data allow to build up a semantic search engine as an extension of a conventional search engine. The crawlers of well established search engines like Google, Yahoo! or Bing can index documents but, so far, their capabilities to recognize the intentions of searchers are still rather limited. Indeed, taking into account characteristics of the searchers considerably extend both, the quantity of data to analyse and the dimensionality of the search problem. Well established search engines therefore still focus on general search, that is, "search for all", not on specialized search, that is, "search for a few". This thesis reports on techniques that have been adapted or conceived, deployed, and tested for building a semantic search engine for the very specific context of artworks. In contrast to, for example, the interpretation of X-ray images, the interpretation of artworks is far from being fully automatable. Therefore artwork interpretation has been based on Human Computation, that is, a software-based gathering of contributions by many humans. The approach reported about in this thesis first relies on so called Games With A Purpose, or GWAPs, for this gathering: Casual games provide an incentive for a potentially unlimited community of humans to contribute with their appreciations of artworks. Designing convenient incentives is less trivial than it might seem at first. An ecosystem of games is needed so as to collect the meta-data on artworks intended for. One game generates the data that can serve as input of another game. This results in semantically rich meta-data that can be used for building up a successful semantic search engine. Thus, a first part of this thesis reports on a "game ecosystem" specifically designed from one known game and including several novel games belonging to the following game classes: (1) Description Games for collecting obvious and trivial meta-data, basically the well-known ESP (for extra-sensorial perception) game of Luis von Ahn, (2) the Dissemination Game Eligo generating translations, (3) the Diversification Game Karido aiming at sharpening differences between the objects, that is, the artworks, interpreted and (3) the Integration Games Combino, Sentiment and TagATag that generate structured meta-data. Secondly, the approach to building a semantic search engine reported about in this thesis relies on Higher-Order Singular Value Decomposition (SVD). More precisely, the data and meta-data on artworks gathered with the afore mentioned GWAPs are collected in a tensor, that is a mathematical structure generalising matrices to more than only two dimensions, columns and rows. The dimensions considered are the artwork descriptions, the players, and the artwork themselves. A Higher-Order SVD of this tensor is first used for noise reduction in This thesis reports also on deploying a Higher-Order LSA. The parallel Higher-Order SVD algorithm applied for the Higher-Order LSA and its implementation has been validated on an application related to, but independent from, the semantic search engine for artworks striven for: image compression. This thesis reports on the surprisingly good image compression which can be achieved with Higher-Order SVD. While compression methods based on matrix SVD for each color, the approach reported about in this thesis relies on one single (higher-order) SVD of the whole tensor. This results in both, better quality of the compressed image and in a significant reduction of the memory space needed. Higher-Order SVD is extremely time-consuming what calls for parallel computation. Thus, a step towards automatizing the construction of a semantic search engine for artworks was parallelizing the higher-order SVD method used and running the resulting parallel algorithm on a super-computer. This thesis reports on using Hestenes’ method and R-SVD for parallelising the higher-order SVD. This method is an unconventional choice which is explained and motivated. As of the super-computer needed, this thesis reports on turning the web browsers of the players or searchers into a distributed parallel computer. This is done by a novel specific system and a novel implementation of the MapReduce data framework to data parallelism. Harnessing the web browsers of the players or searchers saves computational power on the server-side. It also scales extremely well with the number of players or searchers because both, playing with and searching for artworks, require human reflection and therefore results in idle local processors that can be brought together into a distributed super-computer.Semantische Suchmaschinen dienen der Verbesserung konventioneller Suche mit semantischen Informationen, oder Metadaten, zu Daten, nach denen gesucht wird, oder zu den Suchenden. Bisher nutzt Semantische Suche Charakteristika von Suchenden wie Alter, Bildung oder gesprochene Sprache für die Auswahl und/oder das Ranking von Suchergebnissen. Solche Daten erlauben den Aufbau einer Semantischen Suchmaschine als Erweiterung einer konventionellen Suchmaschine. Die Crawler der fest etablierten Suchmaschinen wie Google, Yahoo! oder Bing können Dokumente indizieren, bisher sind die Fähigkeiten eher beschränkt, die Absichten von Suchenden zu erkennen. Tatsächlich erweitert die Berücksichtigung von Charakteristika von Suchenden beträchtlich beides, die Menge an zu analysierenden Daten und die Dimensionalität des Such-Problems. Fest etablierte Suchmaschinen fokussieren deswegen stark auf allgemeine Suche, also "Suche für alle", nicht auf spezialisierte Suche, also "Suche für wenige". Diese Arbeit berichtet von Techniken, die adaptiert oder konzipiert, eingesetzt und getestet wurden, um eine semantische Suchmaschine für den sehr speziellen Kontext von Kunstwerken aufzubauen. Im Gegensatz beispielsweise zur Interpretation von Röntgenbildern ist die Interpretation von Kunstwerken weit weg davon gänzlich automatisiert werden zu können. Deswegen basiert die Interpretation von Kunstwerken auf menschlichen Berechnungen, also Software-basiertes Sammeln von menschlichen Beiträgen. Der Ansatz, über den in dieser Arbeit berichtet wird, beruht auf sogenannten "Games With a Purpose" oder GWAPs die folgendes sammeln: Zwanglose Spiele bieten einen Anreiz für eine potenziell unbeschränkte Gemeinde von Menschen, mit Ihrer Wertschätzung von Kunstwerken beizutragen. Geeignete Anreize zu entwerfen in weniger trivial als es zuerst scheinen mag. Ein Ökosystem von Spielen wird benötigt, um Metadaten gedacht für Kunstwerke zu sammeln. Ein Spiel erzeugt Daten, die als Eingabe für ein anderes Spiel dienen können. Dies resultiert in semantisch reichhaltigen Metadaten, die verwendet werden können, um eine erfolgreiche Semantische Suchmaschine aufzubauen. Deswegen berichtet der erste Teil dieser Arbeit von einem "Spiel-Ökosystem", entwickelt auf Basis eines bekannten Spiels und verschiedenen neuartigen Spielen, die zu verschiedenen Spiel-Klassen gehören. (1) Beschreibungs-Spiele zum Sammeln offensichtlicher und trivialer Metadaten, vor allem dem gut bekannten ESP-Spiel (Extra Sensorische Wahrnehmung) von Luis von Ahn, (2) dem Verbreitungs-Spiel Eligo zur Erzeugung von Übersetzungen, (3) dem Diversifikations-Spiel Karido, das Unterschiede zwischen Objekten, also interpretierten Kunstwerken, schärft und (3) Integrations-Spiele Combino, Sentiment und Tag A Tag, die strukturierte Metadaten erzeugen. Zweitens beruht der Ansatz zum Aufbau einer semantischen Suchmaschine, wie in dieser Arbeit berichtet, auf Singulärwertzerlegung (SVD) höherer Ordnung. Präziser werden die Daten und Metadaten über Kunstwerk gesammelt mit den vorher genannten GWAPs in einem Tensor gesammelt, einer mathematischen Struktur zur Generalisierung von Matrizen zu mehr als zwei Dimensionen, Spalten und Zeilen. Die betrachteten Dimensionen sind die Beschreibungen der Kunstwerke, die Spieler, und die Kunstwerke selbst. Eine Singulärwertzerlegung höherer Ordnung dieses Tensors wird zuerst zur Rauschreduktion verwendet nach der Methode der sogenannten Latenten Semantischen Analyse (LSA). Diese Arbeit berichtet auch über die Anwendung einer LSA höherer Ordnung. Der parallele Algorithmus für Singulärwertzerlegungen höherer Ordnung, der für LSA höherer Ordnung verwendet wird, und seine Implementierung wurden validiert an einer verwandten aber von der semantischen Suche unabhängig angestrebten Anwendung: Bildkompression. Diese Arbeit berichtet von überraschend guter Kompression, die mit Singulärwertzerlegung höherer Ordnung erzielt werden kann. Neben Matrix-SVD-basierten Kompressionsverfahren für jede Farbe, beruht der Ansatz wie in dieser Arbeit berichtet auf einer einzigen SVD (höherer Ordnung) auf dem gesamten Tensor. Dies resultiert in beidem, besserer Qualität von komprimierten Bildern und einer signifikant geringeren des benötigten Speicherplatzes. Singulärwertzerlegung höherer Ordnung ist extrem zeitaufwändig, was parallele Berechnung verlangt. Deswegen war ein Schritt in Richtung Aufbau einer semantischen Suchmaschine für Kunstwerke eine Parallelisierung der verwendeten SVD höherer Ordnung auf einem Super-Computer. Diese Arbeit berichtet vom Einsatz der Hestenes’-Methode und R-SVD zur Parallelisierung der SVD höherer Ordnung. Diese Methode ist eine unkonventionell Wahl, die erklärt und motiviert wird. Ab nun wird ein Super-Computer benötigt. Diese Arbeit berichtet über die Wandlung der Webbrowser von Spielern oder Suchenden in einen verteilten Super-Computer. Dies leistet ein neuartiges spezielles System und eine neuartige Implementierung des MapReduce Daten-Frameworks für Datenparallelismus. Das Einspannen der Webbrowser von Spielern und Suchenden spart server-seitige Berechnungskraft. Ebenso skaliert die Berechnungskraft so extrem gut mit der Spieleranzahl oder Suchenden, denn beides, Spiel mit oder Suche nach Kunstwerken, benötigt menschliche Reflektion, was deswegen zu ungenutzten lokalen Prozessoren führt, die zu einem verteilten Super-Computer zusammengeschlossen werden können

    Exploratory visual text analytics in the scientific literature domain

    Get PDF

    Digital Methods and Technicity-of-the-Mediums. From Regimes of Functioning to Digital Research

    Get PDF
    Digital methods are taken here as a research practice crucially situated in the technological environment that it explores and exploits. Through software-oriented analysis, this research practice proposes to re-purpose online methods and data for social-medium research but not considered as a proper type of fieldwork because these methods are new and still in their process of description. These methods impose proximity with software and reflect an environment inhabited by technicity. Thus, this dissertation is concerned with a key element of the digital methods research approach: the computational (or technical) mediums as carriers of meaning (see Berry, 2011; Rieder, 2020). The central idea of this dissertation is to address the role of technical knowledge, practise and expertise (as problems and solutions) in the full range of digital methods, taking the technicity of the computational mediums and digital records as objects of study. By focusing on how the concept of technicity matters in digital research, I argue that not only do digital methods open an opportunity for further enquiry into this concept, but they also benefit from such enquiry, since the working material of this research practice are the media, its methods, mechanisms and data. In this way, the notion of technicity-of-the-mediums is used in two senses pointing on the one hand to the effort to become acquainted with the mediums (from a conceptual, technical and empirical perspective), on the other hand, to the object of technical imagination (the capacity of considering the features and practical qualities of technical mediums as ensemble and as a solution to methodological problems). From the standpoint of non-developer researchers and the perspective of software practice, the understanding of digital technologies starts from direct contact, comprehension and different uses of (research) software and the web environment. The journey of digital methods is only fulfilled by technical practice, experimentation and exploration. Two main arguments are put forward in this dissertation. The first states that we can only repurpose what we know well, which means that we need to become acquainted with the mediums from a conceptual-technical-practical perspective; whereas, the second argument states that the practice of digital methods is enhanced when researchers make room for, grow and establish a sensitivity to the technicity-of-the-mediums. The main contribution of this dissertation is to develop a series of conceptual and practical principles for digital research. Theoretically, this dissertation suggests a broader definition of medium in digital methods and introduces the notion of the technicity-of-the-mediums and three distinct but related aspects to consider – namely platform grammatisation, cultures of use and software affordances, as an attempt to defuse some of the difficulties related to the use of digital methods. Practically, it presents concrete methodological approaches providing new analytical perspectives for social media research and digital network studies, while suggesting a way of carrying out digital fieldwork which is substantiated by technical practices and imagination.Os métodos digitais são aqui tomados como uma prática de investigação crucialmente situada no ambiente tecnológico que explora e do qual tira benefício. Esta prática de pesquisa propõe a reorientação dos métodos online e dos dados para a pesquisa social e do meio através da análise orientada por software, prática ainda não considerada como um tipo adequado de trabalho de campo porque estes métodos são novos e a sua descrição está ainda numa fase incipiente. Estes métodos obrigam a adquirir familiaridade com o software e refletem um ambiente habitado pela tecnicidade. Esta dissertação diz assim respeito a um elemento-chave da abordagem de investigação dos métodos digitais: os meios computacionais (ou técnicos) enquanto portadores de significado (ver Berry, 2011; Rieder, 2020). A ideia central desta dissertação é a de refletir sobre o papel do conhecimento técnico, da prática técnica e da aquisição de competências (como problemas e como soluções) em todo o âmbito dos métodos digitais, assumindo a tecnicidade dos meios computacionais e dos registos digitais como objetos de estudo. Ao centrar-me na forma como o conceito de tecnicidade é fundamental na investigação digital, argumento que não só os métodos digitais abrem uma oportunidade para uma investigação mais aprofundada deste conceito, mas também que beneficiam deste tipo de investigação, uma vez que a matéria-prima desta prática de pesquisa são os meios, os seus métodos, mecanismos e dados. Deste modo, a noção de tecnicidade-dos-meios é utilizada em dois sentidos: apontando, por um lado, para a necessidade de conhecimento dos meios (duma perspetiva conceptual, técnica e empírica) e, por outro, para o objeto da imaginação técnica (a capacidade de tomar as características e as qualidades práticas dos meios computacionais como um conjunto [ensemble] e como uma solução para problemas metodológicos). Segundo o ponto de vista dos pesquisadores que não estão familiarizados com o desenvolvimento de software (ou de ferramentas digitais) bem como da perspectiva da prática do software, a compreensão das tecnologias digitais deve partir de um contato direto, da compreensão e dos diferentes usos do software e do ambiente da web. O percurso dos métodos digitais só pode ser concretizado pela prática técnica, pela experimentação e pela exploração. Dois argumentos principais são apresentados nesta dissertação. O primeiro afirma que só podemos tirar proveito daquilo que conhecemos de forma aprofundada, o que significa que é necessário que nos familiarizemos com os meios numa perspetiva conceptual-técnica-prática, enquanto o segundo argumento afirma que a prática dos métodos digitais é aperfeiçoada quando os investigadores estão recetivos a, amadurecem e adquirem uma sensibilidade para a tecnicidade-dos-meios. A principal contribuição desta dissertação é o desenvolvimento de um conjunto de princípios conceptuais e práticos para a pesquisa digital. Teoricamente, esta dissertação propõe uma definição mais ampla de meio nos métodos digitais, introduz o conceito de tecnicidade dos- meios e aponta para três facetas distintas mas relacionadas – referimo-nos à gramatização das plataformas, às culturas de utilização e às affordances do software –, como uma solução para minorar algumas das dificuldades relacionadas com a utilização dos métodos digitais. Na prática, apresenta abordagens metodológicas concretas que fornecem novas perspetivas analíticas para a investigação dos media sociais e para os estudos de redes digitais, ao mesmo tempo que sugere uma forma de levar a cabo trabalho de campo digital que é substanciada por práticas técnicas e pela imaginação técnica

    Application of Common Sense Computing for the Development of a Novel Knowledge-Based Opinion Mining Engine

    Get PDF
    The ways people express their opinions and sentiments have radically changed in the past few years thanks to the advent of social networks, web communities, blogs, wikis and other online collaborative media. The distillation of knowledge from this huge amount of unstructured information can be a key factor for marketers who want to create an image or identity in the minds of their customers for their product, brand, or organisation. These online social data, however, remain hardly accessible to computers, as they are specifically meant for human consumption. The automatic analysis of online opinions, in fact, involves a deep understanding of natural language text by machines, from which we are still very far. Hitherto, online information retrieval has been mainly based on algorithms relying on the textual representation of web-pages. Such algorithms are very good at retrieving texts, splitting them into parts, checking the spelling and counting their words. But when it comes to interpreting sentences and extracting meaningful information, their capabilities are known to be very limited. Existing approaches to opinion mining and sentiment analysis, in particular, can be grouped into three main categories: keyword spotting, in which text is classified into categories based on the presence of fairly unambiguous affect words; lexical affinity, which assigns arbitrary words a probabilistic affinity for a particular emotion; statistical methods, which calculate the valence of affective keywords and word co-occurrence frequencies on the base of a large training corpus. Early works aimed to classify entire documents as containing overall positive or negative polarity, or rating scores of reviews. Such systems were mainly based on supervised approaches relying on manually labelled samples, such as movie or product reviews where the opinionist’s overall positive or negative attitude was explicitly indicated. However, opinions and sentiments do not occur only at document level, nor they are limited to a single valence or target. Contrary or complementary attitudes toward the same topic or multiple topics can be present across the span of a document. In more recent works, text analysis granularity has been taken down to segment and sentence level, e.g., by using presence of opinion-bearing lexical items (single words or n-grams) to detect subjective sentences, or by exploiting association rule mining for a feature-based analysis of product reviews. These approaches, however, are still far from being able to infer the cognitive and affective information associated with natural language as they mainly rely on knowledge bases that are still too limited to efficiently process text at sentence level. In this thesis, common sense computing techniques are further developed and applied to bridge the semantic gap between word-level natural language data and the concept-level opinions conveyed by these. In particular, the ensemble application of graph mining and multi-dimensionality reduction techniques on two common sense knowledge bases was exploited to develop a novel intelligent engine for open-domain opinion mining and sentiment analysis. The proposed approach, termed sentic computing, performs a clause-level semantic analysis of text, which allows the inference of both the conceptual and emotional information associated with natural language opinions and, hence, a more efficient passage from (unstructured) textual information to (structured) machine-processable data. The engine was tested on three different resources, namely a Twitter hashtag repository, a LiveJournal database and a PatientOpinion dataset, and its performance compared both with results obtained using standard sentiment analysis techniques and using different state-of-the-art knowledge bases such as Princeton’s WordNet, MIT’s ConceptNet and Microsoft’s Probase. Differently from most currently available opinion mining services, the developed engine does not base its analysis on a limited set of affect words and their co-occurrence frequencies, but rather on common sense concepts and the cognitive and affective valence conveyed by these. This allows the engine to be domain-independent and, hence, to be embedded in any opinion mining system for the development of intelligent applications in multiple fields such as Social Web, HCI and e-health. Looking ahead, the combined novel use of different knowledge bases and of common sense reasoning techniques for opinion mining proposed in this work, will, eventually, pave the way for development of more bio-inspired approaches to the design of natural language processing systems capable of handling knowledge, retrieving it when necessary, making analogies and learning from experience

    Visual Analytics for the Exploratory Analysis and Labeling of Cultural Data

    Get PDF
    Cultural data can come in various forms and modalities, such as text traditions, artworks, music, crafted objects, or even as intangible heritage such as biographies of people, performing arts, cultural customs and rites. The assignment of metadata to such cultural heritage objects is an important task that people working in galleries, libraries, archives, and museums (GLAM) do on a daily basis. These rich metadata collections are used to categorize, structure, and study collections, but can also be used to apply computational methods. Such computational methods are in the focus of Computational and Digital Humanities projects and research. For the longest time, the digital humanities community has focused on textual corpora, including text mining, and other natural language processing techniques. Although some disciplines of the humanities, such as art history and archaeology have a long history of using visualizations. In recent years, the digital humanities community has started to shift the focus to include other modalities, such as audio-visual data. In turn, methods in machine learning and computer vision have been proposed for the specificities of such corpora. Over the last decade, the visualization community has engaged in several collaborations with the digital humanities, often with a focus on exploratory or comparative analysis of the data at hand. This includes both methods and systems that support classical Close Reading of the material and Distant Reading methods that give an overview of larger collections, as well as methods in between, such as Meso Reading. Furthermore, a wider application of machine learning methods can be observed on cultural heritage collections. But they are rarely applied together with visualizations to allow for further perspectives on the collections in a visual analytics or human-in-the-loop setting. Visual analytics can help in the decision-making process by guiding domain experts through the collection of interest. However, state-of-the-art supervised machine learning methods are often not applicable to the collection of interest due to missing ground truth. One form of ground truth are class labels, e.g., of entities depicted in an image collection, assigned to the individual images. Labeling all objects in a collection is an arduous task when performed manually, because cultural heritage collections contain a wide variety of different objects with plenty of details. A problem that arises with these collections curated in different institutions is that not always a specific standard is followed, so the vocabulary used can drift apart from another, making it difficult to combine the data from these institutions for large-scale analysis. This thesis presents a series of projects that combine machine learning methods with interactive visualizations for the exploratory analysis and labeling of cultural data. First, we define cultural data with regard to heritage and contemporary data, then we look at the state-of-the-art of existing visualization, computer vision, and visual analytics methods and projects focusing on cultural data collections. After this, we present the problems addressed in this thesis and their solutions, starting with a series of visualizations to explore different facets of rap lyrics and rap artists with a focus on text reuse. Next, we engage in a more complex case of text reuse, the collation of medieval vernacular text editions. For this, a human-in-the-loop process is presented that applies word embeddings and interactive visualizations to perform textual alignments on under-resourced languages supported by labeling of the relations between lines and the relations between words. We then switch the focus from textual data to another modality of cultural data by presenting a Virtual Museum that combines interactive visualizations and computer vision in order to explore a collection of artworks. With the lessons learned from the previous projects, we engage in the labeling and analysis of medieval illuminated manuscripts and so combine some of the machine learning methods and visualizations that were used for textual data with computer vision methods. Finally, we give reflections on the interdisciplinary projects and the lessons learned, before we discuss existing challenges when working with cultural heritage data from the computer science perspective to outline potential research directions for machine learning and visual analytics of cultural heritage data
    • …
    corecore