116,548 research outputs found

    Using motivation derived from computer gaming in the context of computer based instruction

    Get PDF
    This paper was originally presented at the IEEE Technically Sponsored SAI Computing Conference 2016, London, 13-15 July 2016. Abstract— this paper explores how to exploit game based motivation as a way to promote engagement in computer-based instruction, and in particular in online learning interaction. The paper explores the human psychology of gaming and how this can be applied to learning, the computer mechanics of media presentation, affordances and possibilities, and the emerging interaction of playing games and how this itself can provide a pedagogical scaffolding to learning. In doing so the paper focuses on four aspects of Game Based Motivation and how it may be used; (i) the game player’s perception; (ii) the game designers’ model of how to motivate; (iii) team aspects and social interaction as a motivating factor; (iv) psychological models of motivation. This includes the increasing social nature of computer interaction. The paper concludes with a manifesto for exploiting game based motivation in learning

    Virtual Reality Rhythm Game

    Get PDF
    Virtual reality headsets such as the HTC Vive and Oculus Rift bring robust virtual reality technology in the hands of consumers. However, virtual reality technology is still a very new and unexplored domain with a dearth of compelling software that takes advantage of what virtual reality has to offer. Current rhythm games on the virtual reality platform lack a sense of immersion for the player. These games also require players to remain stationary during gameplay. Our solution is a game where players have to hit musical notes that appear in a trail around them. The trail will move in different directions and players have to move and turn around accordingly in order to hit every note and pass a song

    Optimaztion of Fantasy Basketball Lineups via Machine Learning

    Get PDF
    Machine learning is providing a way to glean never before known insights from the data that gets recorded every day. This paper examines the application of machine learning to the novel field of Daily Fantasy Basketball. The particularities of the fantasy basketball ruleset and playstyle are discussed, and then the results of a data science case study are reviewed. The data set consists of player performance statistics as well as Fantasy Points, implied team total, DvP, and player status. The end goal is to evaluate how accurately the computer can predict a player’s fantasy performance based off a chosen feature set, selection algorithm, and probabilistic methods

    Promoting New Patterns in Household Energy Consumption with Pervasive Learning Games

    Get PDF
    Engaging computer games can be used to change energy consumption patterns in the home. PowerAgent is a pervasive game for Java-enabled mobile phones that is designed to influence everyday activities and use of electricity in the domestic setting. PowerAgent is connected to the household’s automatic electricity meter reading equipment via the cell network, and this setup makes it possible to use actual consumption data in the game. In this paper, we present a two-level model for cognitive and behavior learning, and we discuss the properties of PowerAgent in relation to the underlying situated learning, social learning, and persuasive technology components that we have included in the game

    AI for Classic Video Games using Reinforcement Learning

    Get PDF
    Deep reinforcement learning is a technique to teach machines tasks based on trial and error experiences in the way humans learn. In this paper, some preliminary research is done to understand how reinforcement learning and deep learning techniques can be combined to train an agent to play Archon, a classic video game. We compare two methods to estimate a Q function, the function used to compute the best action to take at each point in the game. In the first approach, we used a Q table to store the states and weights of the corresponding actions. In our experiments, this method converged very slowly. Our second approach was similar to that of [1]: We used a convolutional neural network (CNN) to determine a Q function. This deep neural network model successfully learnt to control the Archon player using keyboard event that it generated. We observed that the second approaches Q function converged faster than the first. For the latter method, the neural net was trained only using prediodic screenshots taken while it was playing. Experiments were conducted on a machine that did not have a GPU, so our training was slower as compared to [1]

    Preliminary Results in a Multi-site Empirical Study on Cross-organizational ERP Size and Effort Estimation

    Get PDF
    This paper reports on initial findings in an empirical study carried out with representatives of two ERP vendors, six ERP adopting organizations, four ERP implementation consulting companies, and two ERP research and advisory services firms. Our study’s goal was to gain understanding of the state-of-the practice in size and effort estimation of cross-organizational ERP projects. Based on key size and effort estimation challenges identified in a previously published literature survey, we explored some difficulties, fallacies and pitfalls these organizations face. We focused on collecting empirical evidence from the participating ERP market players to assess specific facts about the state-of-the-art ERP size and effort estimation practices. Our study adopted a qualitative research method based on an asynchronous online focus group
    • …
    corecore