430 research outputs found

    Get Another Label? Improving Data Quality and Data Mining

    Get PDF
    This paper addresses the repeated acquisition of labels for data items when the labeling is imperfect. We examine the improvement (or lack thereof) in data quality via repeated labeling, and focus especially on the improvement of training labels for supervised induction. With the outsourcing of small tasks becoming easier, for example via Rent-A-Coder or Amazon's Mechanical Turk, it often is possible to obtain less-than-expert labeling at low cost. With low-cost labeling, preparing the unlabeled part of the data can become considerably more expensive than labeling. We present repeated-labeling strategies of increasing complexity and show several main results: (i) Repeated-labeling can improve label and model quality, but not always. (ii) When labels are noisy, repeated labeling can be preferable to single labeling even in the traditional setting where labels are not particularly cheap. (iii) As soon as the cost of processing the unlabeled data is not free, even the simple strategy of labeling everything multiple times can give considerable advantage. (iv) Repeatedly labeling a carefully chosen set of points is generally preferable, and we present a robust technique that combines different notions of uncertainty to select data points for which quality should be improved. The bottom line: the results show clearly that when labeling is not perfect, selective acquisition of multiple labels is a strategy that data miners should have in their repertoire; for certain label-quality/cost regimes, the benefit is substantial.NYU, Stern School of Business, IOMS Department, Center for Digital Economy Researc

    Get Another Label? Improving Data Quality and Data Mining

    Get PDF
    This paper addresses the repeated acquisition of labels for data items when the labeling is imperfect. We examine the improvement (or lack thereof) in data quality via repeated labeling, and focus especially on the improvement of training labels for supervised induction. With the outsourcing of small tasks becoming easier, for example via Rent-A-Coder or Amazon's Mechanical Turk, it often is possible to obtain less-than-expert labeling at low cost. With low-cost labeling, preparing the unlabeled part of the data can become considerably more expensive than labeling. We present repeated-labeling strategies of increasing complexity and show several main results: (i) Repeated-labeling can improve label and model quality, but not always. (ii) When labels are noisy, repeated labeling can be preferable to single labeling even in the traditional setting where labels are not particularly cheap. (iii) As soon as the cost of processing the unlabeled data is not free, even the simple strategy of labeling everything multiple times can give considerable advantage. (iv) Repeatedly labeling a carefully chosen set of points is generally preferable, and we present a robust technique that combines different notions of uncertainty to select data points for which quality should be improved. The bottom line: the results show clearly that when labeling is not perfect, selective acquisition of multiple labels is a strategy that data miners should have in their repertoire; for certain label-quality/cost regimes, the benefit is substantial.NYU, Stern School of Business, IOMS Department, Center for Digital Economy Researc

    Repeated Labeling Using Multiple Noisy Labelers

    Get PDF
    This paper addresses the repeated acquisition of labels for data items when the labeling is imperfect. We examine the improvement (or lack thereof) in data quality via repeated labeling, and focus especially on the improvement of training labels for supervised induction. With the outsourcing of small tasks becoming easier, for example via Amazon's Mechanical Turk, it often is possible to obtain less-than-expert labeling at low cost. With low-cost labeling, preparing the unlabeled part of the data can become considerably more expensive than labeling. We present repeated-labeling strategies of increasing complexity, and show several main results. (i) Repeated-labeling can improve label quality and model quality, but not always. (ii) When labels are noisy, repeated labeling can be preferable to single labeling even in the traditional setting where labels are not particularly cheap. (iii) As soon as the cost of processing the unlabeled data is not free, even the simple strategy of labeling everything multiple times can give considerable advantage. (iv) Repeatedly labeling a carefully chosen set of points is generally preferable, and we present a set of robust techniques that combine different notions of uncertainty to select data points for which quality should be improved. The bottom line: the results show clearly that when labeling is not perfect, selective acquisition of multiple labels is a strategy that data miners should have in their repertoire. For certain label-quality/cost regimes, the benefit is substantial.This work was supported by the National Science Foundation under Grant No. IIS-0643846, by an NSERC Postdoctoral Fellowship, and by an NEC Faculty Fellowship

    Learning to Predict the Wisdom of Crowds

    Full text link
    The problem of "approximating the crowd" is that of estimating the crowd's majority opinion by querying only a subset of it. Algorithms that approximate the crowd can intelligently stretch a limited budget for a crowdsourcing task. We present an algorithm, "CrowdSense," that works in an online fashion to dynamically sample subsets of labelers based on an exploration/exploitation criterion. The algorithm produces a weighted combination of a subset of the labelers' votes that approximates the crowd's opinion.Comment: Presented at Collective Intelligence conference, 2012 (arXiv:1204.2991

    Learning From Noisy Singly-labeled Data

    Get PDF
    Supervised learning depends on annotated examples, which are taken to be the \emph{ground truth}. But these labels often come from noisy crowdsourcing platforms, like Amazon Mechanical Turk. Practitioners typically collect multiple labels per example and aggregate the results to mitigate noise (the classic crowdsourcing problem). Given a fixed annotation budget and unlimited unlabeled data, redundant annotation comes at the expense of fewer labeled examples. This raises two fundamental questions: (1) How can we best learn from noisy workers? (2) How should we allocate our labeling budget to maximize the performance of a classifier? We propose a new algorithm for jointly modeling labels and worker quality from noisy crowd-sourced data. The alternating minimization proceeds in rounds, estimating worker quality from disagreement with the current model and then updating the model by optimizing a loss function that accounts for the current estimate of worker quality. Unlike previous approaches, even with only one annotation per example, our algorithm can estimate worker quality. We establish a generalization error bound for models learned with our algorithm and establish theoretically that it's better to label many examples once (vs less multiply) when worker quality is above a threshold. Experiments conducted on both ImageNet (with simulated noisy workers) and MS-COCO (using the real crowdsourced labels) confirm our algorithm's benefits.Comment: 18 pages, 3 figure
    • …
    corecore