942 research outputs found

    A Comprehensive Review of Data-Driven Co-Speech Gesture Generation

    Full text link
    Gestures that accompany speech are an essential part of natural and efficient embodied human communication. The automatic generation of such co-speech gestures is a long-standing problem in computer animation and is considered an enabling technology in film, games, virtual social spaces, and for interaction with social robots. The problem is made challenging by the idiosyncratic and non-periodic nature of human co-speech gesture motion, and by the great diversity of communicative functions that gestures encompass. Gesture generation has seen surging interest recently, owing to the emergence of more and larger datasets of human gesture motion, combined with strides in deep-learning-based generative models, that benefit from the growing availability of data. This review article summarizes co-speech gesture generation research, with a particular focus on deep generative models. First, we articulate the theory describing human gesticulation and how it complements speech. Next, we briefly discuss rule-based and classical statistical gesture synthesis, before delving into deep learning approaches. We employ the choice of input modalities as an organizing principle, examining systems that generate gestures from audio, text, and non-linguistic input. We also chronicle the evolution of the related training data sets in terms of size, diversity, motion quality, and collection method. Finally, we identify key research challenges in gesture generation, including data availability and quality; producing human-like motion; grounding the gesture in the co-occurring speech in interaction with other speakers, and in the environment; performing gesture evaluation; and integration of gesture synthesis into applications. We highlight recent approaches to tackling the various key challenges, as well as the limitations of these approaches, and point toward areas of future development.Comment: Accepted for EUROGRAPHICS 202

    Zero-Shot Style Transfer for Gesture Animation driven by Text and Speech using Adversarial Disentanglement of Multimodal Style Encoding

    Full text link
    Modeling virtual agents with behavior style is one factor for personalizing human agent interaction. We propose an efficient yet effective machine learning approach to synthesize gestures driven by prosodic features and text in the style of different speakers including those unseen during training. Our model performs zero shot multimodal style transfer driven by multimodal data from the PATS database containing videos of various speakers. We view style as being pervasive while speaking, it colors the communicative behaviors expressivity while speech content is carried by multimodal signals and text. This disentanglement scheme of content and style allows us to directly infer the style embedding even of speaker whose data are not part of the training phase, without requiring any further training or fine tuning. The first goal of our model is to generate the gestures of a source speaker based on the content of two audio and text modalities. The second goal is to condition the source speaker predicted gestures on the multimodal behavior style embedding of a target speaker. The third goal is to allow zero shot style transfer of speakers unseen during training without retraining the model. Our system consists of: (1) a speaker style encoder network that learns to generate a fixed dimensional speaker embedding style from a target speaker multimodal data and (2) a sequence to sequence synthesis network that synthesizes gestures based on the content of the input modalities of a source speaker and conditioned on the speaker style embedding. We evaluate that our model can synthesize gestures of a source speaker and transfer the knowledge of target speaker style variability to the gesture generation task in a zero shot setup. We convert the 2D gestures to 3D poses and produce 3D animations. We conduct objective and subjective evaluations to validate our approach and compare it with a baseline

    Real Time Animation of Virtual Humans: A Trade-off Between Naturalness and Control

    Get PDF
    Virtual humans are employed in many interactive applications using 3D virtual environments, including (serious) games. The motion of such virtual humans should look realistic (or ‘natural’) and allow interaction with the surroundings and other (virtual) humans. Current animation techniques differ in the trade-off they offer between motion naturalness and the control that can be exerted over the motion. We show mechanisms to parametrize, combine (on different body parts) and concatenate motions generated by different animation techniques. We discuss several aspects of motion naturalness and show how it can be evaluated. We conclude by showing the promise of combinations of different animation paradigms to enhance both naturalness and control

    TranSTYLer: Multimodal Behavioral Style Transfer for Facial and Body Gestures Generation

    Full text link
    This paper addresses the challenge of transferring the behavior expressivity style of a virtual agent to another one while preserving behaviors shape as they carry communicative meaning. Behavior expressivity style is viewed here as the qualitative properties of behaviors. We propose TranSTYLer, a multimodal transformer based model that synthesizes the multimodal behaviors of a source speaker with the style of a target speaker. We assume that behavior expressivity style is encoded across various modalities of communication, including text, speech, body gestures, and facial expressions. The model employs a style and content disentanglement schema to ensure that the transferred style does not interfere with the meaning conveyed by the source behaviors. Our approach eliminates the need for style labels and allows the generalization to styles that have not been seen during the training phase. We train our model on the PATS corpus, which we extended to include dialog acts and 2D facial landmarks. Objective and subjective evaluations show that our model outperforms state of the art models in style transfer for both seen and unseen styles during training. To tackle the issues of style and content leakage that may arise, we propose a methodology to assess the degree to which behavior and gestures associated with the target style are successfully transferred, while ensuring the preservation of the ones related to the source content

    Understanding the Predictability of Gesture Parameters from Speech and their Perceptual Importance

    Full text link
    Gesture behavior is a natural part of human conversation. Much work has focused on removing the need for tedious hand-animation to create embodied conversational agents by designing speech-driven gesture generators. However, these generators often work in a black-box manner, assuming a general relationship between input speech and output motion. As their success remains limited, we investigate in more detail how speech may relate to different aspects of gesture motion. We determine a number of parameters characterizing gesture, such as speed and gesture size, and explore their relationship to the speech signal in a two-fold manner. First, we train multiple recurrent networks to predict the gesture parameters from speech to understand how well gesture attributes can be modeled from speech alone. We find that gesture parameters can be partially predicted from speech, and some parameters, such as path length, being predicted more accurately than others, like velocity. Second, we design a perceptual study to assess the importance of each gesture parameter for producing motion that people perceive as appropriate for the speech. Results show that a degradation in any parameter was viewed negatively, but some changes, such as hand shape, are more impactful than others. A video summarization can be found at https://youtu.be/aw6-_5kmLjY.Comment: To be published in the Proceedings of the 20th ACM International Conference on Intelligent Virtual Agents (IVA 20

    Human or Robot?: Investigating voice, appearance and gesture motion realism of conversational social agents

    Get PDF
    Research on creation of virtual humans enables increasing automatization of their behavior, including synthesis of verbal and nonverbal behavior. As the achievable realism of different aspects of agent design evolves asynchronously, it is important to understand if and how divergence in realism between behavioral channels can elicit negative user responses. Specifically, in this work, we investigate the question of whether autonomous virtual agents relying on synthetic text-to-speech voices should portray a corresponding level of realism in the non-verbal channels of motion and visual appearance, or if, alternatively, the best available realism of each channel should be used. In two perceptual studies, we assess how realism of voice, motion, and appearance influence the perceived match of speech and gesture motion, as well as the agent\u27s likability and human-likeness. Our results suggest that maximizing realism of voice and motion is preferable even when this leads to realism mismatches, but for visual appearance, lower realism may be preferable. (A video abstract can be found at https://youtu.be/arfZZ-hxD1Y.
    corecore