357 research outputs found

    Gesture Recognition Using Hidden Markov Models Augmented with Active Difference Signatures

    Get PDF
    With the recent invention of depth sensors, human gesture recognition has gained significant interest in the fields of computer vision and human computer interaction. Robust gesture recognition is a difficult problem because of the spatiotemporal variations in gesture formation, subject size, subject location, image fidelity, and subject occlusion. Gesture boundary detection, or the automatic detection of the onset and offset of a gesture in a sequence of gestures, is critical toward achieving robust gesture recognition. Existing gesture recognition methods perform the task of gesture segmentation either using resting frames in a gesture sequence or by using additional information such as audio, depth images, or RGB images. This ancillary information introduces high latency in gesture segmentation and recognition, thus making it inappropriate for real time applications. This thesis proposes a novel method to recognize time-varying human gestures from continuous video streams. The proposed method passes skeleton joint information into a Hidden Markov Model augmented with active difference signatures to achieve state-of-the-art gesture segmentation and recognition. Active body parts are used to calculate the likelihood of previously unseen data to facilitate gesture segmentation. Active difference signatures are used to describe temporal motion as well as static differences from a canonical resting position. Geometric features, such as joint angles, and joint topological distances are used along with active difference signatures as salient feature descriptors. These feature descriptors serve as unique signatures which identify hidden states in a Hidden Markov Model. The Hidden Markov Model is able to identify gestures in a robust fashion which is tolerant to spatiotemporal and human-to-human variation in gesture articulation. The proposed method is evaluated on both isolated and continuous datasets. An accuracy of 80.7% is achieved on the isolated MSR3D dataset and a mean Jaccard index of 0.58 is achieved on the continuous ChaLearn dataset. Results improve upon existing gesture recognition methods, which achieve a Jaccard index of 0.43 on the ChaLearn dataset. Comprehensive experiments investigate the feature selection, parameter optimization, and algorithmic methods to help understand the contributions of the proposed method

    Multi-modal human gesture recognition combining dynamic programming and probabilistic methods

    Get PDF
    In this M. Sc. Thesis, we deal with the problem of Human Gesture Recognition using Human Behavior Analysis technologies. In particular, we apply the proposed methodologies in both health care and social applications. In these contexts, gestures are usually performed in a natural way, producing a high variability between the Human Poses that belong to them. This fact makes Human Gesture Recognition a very challenging task, as well as their generalization on developing technologies for Human Behavior Analysis. In order to tackle with the complete framework for Human Gesture Recognition, we split the process in three main goals: Computing multi-modal feature spaces, probabilistic modelling of gestures, and clustering of Human Poses for Sub-Gesture representation. Each of these goals implicitly includes different challenging problems, which are interconnected and faced by three presented approaches: Bag-of-Visual-and-Depth-Words, Probabilistic-Based Dynamic Time Warping, and Sub-Gesture Representation. The methodologies of each of these approaches are explained in detail in the next sections. We have validated the presented approaches on different public and designed data sets, showing high performance and the viability of using our methods for real Human Behavior Analysis systems and applications. Finally, we show a summary of different related applications currently in development, as well as both conclusions and future trends of research

    Hand gesture spotting and recognition using HMMs and CRFs in color image sequences

    Get PDF
    Magdeburg, Univ., Fak. fĂĽr Elektrotechnik und Informationstechnik, Diss., 2010von Mahmoud Othman Selim Mahmoud Elmezai

    A Multilayer Hidden Markov Models-Based Method for Human-Robot Interaction

    Get PDF
    To achieve Human-Robot Interaction (HRI) by using gestures, a continuous gesture recognition approach based on Multilayer Hidden Markov Models (MHMMs) is proposed, which consists of two parts. One part is gesture spotting and segment module, the other part is continuous gesture recognition module. Firstly, a Kinect sensor is used to capture 3D acceleration and 3D angular velocity data of hand gestures. And then, a Feed-forward Neural Networks (FNNs) and a threshold criterion are used for gesture spotting and segment, respectively. Afterwards, the segmented gesture signals are respectively preprocessed and vector symbolized by a sliding window and a K-means clustering method. Finally, symbolized data are sent into Lower Hidden Markov Models (LHMMs) to identify individual gestures, and then, a Bayesian filter with sequential constraints among gestures in Upper Hidden Markov Models (UHMMs) is used to correct recognition errors created in LHMMs. Five predefined gestures are used to interact with a Kinect mobile robot in experiments. The experimental results show that the proposed method not only has good effectiveness and accuracy, but also has favorable real-time performance

    Gesture and sign language recognition with deep learning

    Get PDF

    Computational Models for the Automatic Learning and Recognition of Irish Sign Language

    Get PDF
    This thesis presents a framework for the automatic recognition of Sign Language sentences. In previous sign language recognition works, the issues of; user independent recognition, movement epenthesis modeling and automatic or weakly supervised training have not been fully addressed in a single recognition framework. This work presents three main contributions in order to address these issues. The first contribution is a technique for user independent hand posture recognition. We present a novel eigenspace Size Function feature which is implemented to perform user independent recognition of sign language hand postures. The second contribution is a framework for the classification and spotting of spatiotemporal gestures which appear in sign language. We propose a Gesture Threshold Hidden Markov Model (GT-HMM) to classify gestures and to identify movement epenthesis without the need for explicit epenthesis training. The third contribution is a framework to train the hand posture and spatiotemporal models using only the weak supervision of sign language videos and their corresponding text translations. This is achieved through our proposed Multiple Instance Learning Density Matrix algorithm which automatically extracts isolated signs from full sentences using the weak and noisy supervision of text translations. The automatically extracted isolated samples are then utilised to train our spatiotemporal gesture and hand posture classifiers. The work we present in this thesis is an important and significant contribution to the area of natural sign language recognition as we propose a robust framework for training a recognition system without the need for manual labeling
    • …
    corecore