564 research outputs found

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Visualization Techniques for Neuroscience-Inspired Dynamic Architectures

    Get PDF
    This work introduces visualization tools for Neuroscience-Inspired Dynamic Architecture (NIDA) networks and for the Dynamic Adaptive Neural Network Array (DANNA) hardware implementation of NIDA. A NIDA network is a novel type of artificial neural network that has performed well on control, anomaly detection, and classification tasks. We introduce a three dimensional visualization of software NIDA networks that represents network structure and simulates activity on networks. We present some of the analysis tasks for which the tool has been used, including the identification of useful substructures within NIDA networks through activity analysis and through the tracing of causality paths from events to their respective sources. We discuss features of the visualization that allow for the exploration of dense networks and subnetworks. We define analysis goals for the tools, in particular the definition of similarity between networks and substructures and the objectives for the recognition of similar substructures. We also introduce a two dimensional visual interface for DANNAs, which includes representation of the physical arrangement of elements on DANNAs, as well as interactions to configure and save the networks. We explore various representations of elements and connections within DANNAs, and we demonstrate the interactions that assist users in evaluating and modifying the networks. Finally, we propose extensions to the tools that will further aid in the exploration and understanding of NIDA and DANNA structure and behavior

    Perceptual Dehumanization

    Get PDF
    The results of eighteen studies support the hypothesis that the holistic processing of faces is attenuated by social facts in a manner that serves the formation of cooperative, non-kin based communities. The first chapter establishes the phenomenon of Perceptual Dehumanization through demonstrating a functional link between face processing and social behavior. A multi-method array of social and perceptual techniques suggests that the holistic processing of faces is inhibited upon learning someone is a norm violator and that this inhibition of holistic processing facilitates punishment. The second chapter determines the social function of Perceptual Dehumanization. It combines past theoretical accounts of dehumanization with modern work on perceptual categorization to propose that perceptual dehumanization functions to produce indifference towards harm (as opposed to facilitating the active or passive infliction of harm). This thesis is supported by results from multiple methods, which indicate that the holistic processing of faces is inhibited for high status civil servant. Consistently, these inhibitions in holistic processing facilitate the sacrifice of these civil servants for the greater good. The third chapter establishes the cognitive mechanism through which the attenuation of holistic processing occurs. Results from both eye-tracking and exogenous manipulations of attention suggest that Perceptual Dehumanization occurs due to a shift in the gaze pattern that causes both changes in perceptual processing and social behavior. This program of research emphasizes the interdependency between human’s ability to identify faces (i.e. engage in holistic processing) and human’s ability to forge longstanding non-kin cooperative bonds; it suggests face perception is an inherently social process. More broadly it suggests combing social functionalism and cognitive structuralism may be a fruitful avenue for future research

    Visual style: Qualitative and context-dependent categorization

    Full text link
    Style is an ordering principle by which to structure artifacts in a design domain. The application of a visual order entails some explicit grouping property that is both cognitively plausible and contextually dependent. Central to cognitive-contextual notions are the type of representation used in analysis and the flexibility to allow semantic interpretation. We present a model of visual style based on the concept of similarity as a qualitative context-dependent categorization. The two core components of the model are semantic feature extraction and self-organizing maps (SOMs). The model proposes a method of categorizing two-dimensional unannotated design diagrams using both low-level geometric and high-level semantic features that are automatically derived from the pictorial content of the design. The operation of the initial model, called Q-SOM, is then extended to include relevance feedback (Q-SOM:RF). The extended model can be seen as a series of sequential processing stages, in which qualitative encoding and feature extraction are followed by iterative recategorization. Categorization is achieved using an unsupervised SOM, and contextual dependencies are integrated via cluster relevance determined by the observer's feedback. The following stages are presented: initial per feature detection and extraction, selection of feature sets corresponding to different spatial ontologies, unsupervised categorization of design diagrams based on appropriate feature subsets, and integration of design context via relevance feedback. From our experiments we compare different outcomes from consecutive stages of the model. The results show that the model provides a cognitively plausible and context-dependent method for characterizing visual style in design. Copyright © 2006 Cambridge University Press

    Automatic facial recognition based on facial feature analysis

    Get PDF

    A Multiple-Systems Approach in the Symbolic Modelling of Human Vision

    Get PDF
    For most of the thirty years or so of machine vision research, activity has been concentrated mainly in the domain of metric-based approaches: there has been negligible attention to the psychological factors in human vision. With the recent resurgence of interest in neural systems, that is now changing. This thesis discusses relevant aspects of basic visual neuroanatomy, and psychological phenomena, in an attempt to relate the concepts to a model of human vision and the prospective goals of future machine vision systems. It is suggested that, while biological vision is complex, the underlying mechanisms of human vision are more tractable than is often believed. We also argue here that the controversial subject of direct vision plays a crucial role in natural vision, and we attempt to relate this to the model. The recognition of massive parallelism in natural vision has led to proposals for emulating aspects of neural networks in technology. The systems model developed in this work demonstrates software-simulated cellular automata (CAs) in the role of mainly low-level image processing. It is shown that CAs are able to efficiently provide both conventional and neurally-inspired vision functions. The thesis also discusses the use of Prolog as the means of realising higher level image understanding. The symbolic processing developed is basic, but is nevertheless sufficient for the purposes of the present. demonstrations. Extensions to the concepts can be easily achieved. The modular systems approach adopted blends together several ideas and processes, and results in a more robust model of human vision that is able to translate a noisy real image into an accessible symbolic form for expert-domain interpretation

    Towards the Development of a Model of Vision: An Investigation into the Architectures and Mechanisms of Visual Perception

    Get PDF
    A conceptual model of visual perception has been developed using a multidisciplinary approach which combines both top-down and bottom-up descriptions of vision. Top-down psychological theories of visual perception have been investigated resulting in the development of a theory of perception which combines the best of existing accounts. Perception is defined in terms of a combination of "data driven" and "concept driven" explanations. Bottom-up neurophysiological descriptions have also been investigated to provide possible descriptions of structure and function for the development of a conceptual model based upon the theory. An attempt is made to provide a "complete" account of visual perception through the development of both the theory and conceptual model. Further it is envisaged that the development of such a model will provide new insight into the development of artificial vision systems and new algorithms for perceptual function in such systems

    How sketches work: a cognitive theory for improved system design

    Get PDF
    Evidence is presented that in the early stages of design or composition the mental processes used by artists for visual invention require a different type of support from those used for visualising a nearly complete object. Most research into machine visualisation has as its goal the production of realistic images which simulate the light pattern presented to the retina by real objects. In contrast sketch attributes preserve the results of cognitive processing which can be used interactively to amplify visual thought. The traditional attributes of sketches include many types of indeterminacy which may reflect the artist's need to be "vague". Drawing on contemporary theories of visual cognition and neuroscience this study discusses in detail the evidence for the following functions which are better served by rough sketches than by the very realistic imagery favoured in machine visualising systems. 1. Sketches are intermediate representational types which facilitate the mental translation between descriptive and depictive modes of representing visual thought. 2. Sketch attributes exploit automatic processes of perceptual retrieval and object recognition to improve the availability of tacit knowledge for visual invention. 3. Sketches are percept-image hybrids. The incomplete physical attributes of sketches elicit and stabilise a stream of super-imposed mental images which amplify inventive thought. 4. By segregating and isolating meaningful components of visual experience, sketches may assist the user to attend selectively to a limited part of a visual task, freeing otherwise over-loaded cognitive resources for visual thought. 5. Sequences of sketches and sketching acts support the short term episodic memory for cognitive actions. This assists creativity, providing voluntary control over highly practised mental processes which can otherwise become stereotyped. An attempt is made to unite the five hypothetical functions. Drawing on the Baddeley and Hitch model of working memory, it is speculated that the five functions may be related to a limited capacity monitoring mechanism which makes tacit visual knowledge explicitly available for conscious control and manipulation. It is suggested that the resources available to the human brain for imagining nonexistent objects are a cultural adaptation of visual mechanisms which evolved in early hominids for responding to confusing or incomplete stimuli from immediately present objects and events. Sketches are cultural inventions which artificially mimic aspects of such stimuli in order to capture these shared resources for the different purpose of imagining objects which do not yet exist. Finally the implications of the theory for the design of improved machine systems is discussed. The untidy attributes of traditional sketches are revealed to include cultural inventions which serve subtle cognitive functions. However traditional media have many short-comings which it should be possible to correct with new technology. Existing machine systems for sketching tend to imitate nonselectively the media bound properties of sketches without regard to the functions they serve. This may prove to be a mistake. It is concluded that new system designs are needed in which meaningfully structured data and specialised imagery amplify without interference or replacement the impressive but limited creative resources of the visual brain

    Facial-Expression Affective Attributes and their Configural Correlates: Components and Categories

    Get PDF
    The present study investigates the perception of facial expressions of emotion, and explores the relation between the configural properties of expressions and their subjective attribution. Stimuli were a male and a female series of morphed facial expressions, interpolated between prototypes of seven emotions (happiness, sadness, fear, anger, surprise and disgust, and neutral) from Ekman and Friesen (1976). Topographical properties of the stimuli were quantified using the Facial Expression Measurement (FACEM) scheme. Perceived dissimilarities between the emotional expressions were elicited using a sorting procedure and processed with multidimensional scaling. Four dimensions were retained in the reconstructed facial-expression space, with positive and negative expressions opposed along D1, while the other three dimensions were interpreted as affective attributes distinguishing clusters of expressions categorized as “Surprise-Fear,” “Anger,” and “Disgust.” Significant relationships were found between these affective attributes and objective facial measures of the stimuli. The findings support a componential explanatory scheme for expression processing, wherein each component of a facial stimulus conveys an affective value separable from its context, rather than a categorical-gestalt scheme. The findings further suggest that configural information is closely involved in the decoding of affective attributes of facial expressions. Configural measures are also suggested as a common ground for dimensional as well as categorical perception of emotional faces.Este estudio investiga la percepción de las expresiones faciales de la emoción y explora la relación entre las propiedades configurales de las expresiones y su atribución subjetiva. Los estímulos eran una serie de expresiones faciales transformadas por ordenador, interpuestas entre los prototipos de siete emociones (felicidad, tristeza, miedo, ira, sorpresa, asco y neutral) tomados de Ekman y Friesen (1976). Las propiedades topográficas de los estímulos se cuantificaron mediante el esquema Facial Expression Measurement (FACEM). Las disimilaridades percibidas entre las expresiones emocionales se elicitaron mediante un procedimiento de clasificación y se procesaron con escalonamiento multidimensional. Se retuvieron cuatro dimensiones en el espacio facial-expresión reconstruido, con expresiones positivas y negativas contrapuestas a lo largo de D1, y las restantes tres dimensiones se interpretaron como atributos afectivos, distinguiendo clusters de expresiones clasificadas como “Sorpresa/Miedo”, “Ira”, y “Asco”. Se hallaron relaciones significativas entre estos atributos afectivos y las medidas faciales objetivas de los estímulos. Los resultados apoyan un esquema explicativo componencial para el procesamiento de las expresiones, en el que cada componente de un estímulo facial conlleva un valor afectivo separable de su contexto, más que un esquema categórico de tipo Gestalt. Además sugieren que la información configural juega un papel importante en la decodificación de los atributos afectivos de las expresiones faciales Además, sugieren que las medidas configurales constituyen en terreno común de la percepción dimensional y categórica de las caras emocionales
    corecore