22 research outputs found

    Evaluation and selection of technologies improving the quality of life of older people

    Get PDF
    Purpose: According to the UN population forecast by the year 2030 people aged 65 years and over will have made up 11.67% of the world's total population and 22.97% of the European population. So, in less than 10 years, almost every fourth Pole will be over 65 years old. It, therefore, seems necessary to examine how health, life and consumption needs of older people can be met and which technologies can improve the quality of life of older people. The main aim of the article is to identify, evaluate and build a ranking of gerontechnologies – technologies improving the quality of life of older people. The article also examines the influence of gender, age, education, and place of residence on the evaluation of gerontechnology groups. Design/Methodology/Approach: The research was carried out with critical literature analysis, logical construct method as well as statistical research. A survey was conducted with the use of CATI and CAWI in the period December 2019 to January 2020 on a representative group of poles aged over 40 years old. Findings: The research assessed and ranked nine main groups of technologies improving the quality of life of older people. The impact of gender, age, education, and place of residence on the assessment of these technologies was also examined. Practical Implications: Identification of the highest-rated technology improving the quality of life of older people. Originality/Value: To gain new knowledge in identifying the needs and expectations of future and current users of technologies that improve the quality of life of older people.peer-reviewe

    Using mobile devices and apps to assist the elder population in rural areas and generate business opportunities

    Get PDF
    Providing gerontological cares represents an increased challenge when applied to rural scenarios. This paper discusses the role of technology in gerontology and specifically how technology-based solutions can be developed to assist the elderly population in rural areas. We also characterize the Northeast Portuguese region exposing its rural characteristics and presented some demographic numbers. Finally, a conceptual model and a prototype supported by mobile devices are presented to assist and monitor the elderly and enhance business opportunities. The developed prototype allows not only to assist the elderly in a set of typical elderly population routines - such as those related to health - but also to improve the interaction between the elderly and their relatives and / or caregivers. This work is part of a more extensive effort that has been made in the search for effective solutions to assist the elderly population in rural areas, typically distant from the main health and / or support services; contributing to relieve these deficits.info:eu-repo/semantics/publishedVersio

    Fuzzy-description logic for supporting the rehabilitation of the elderly

    Full text link
    [EN] According to the latest statistics, the proportion of the elderly (+65) is increasing and is expected to double within the European Union in a period of 50 years. This ageing is due to the improvement of quality of life and advances in medicine in the last decades. Gerontechnology is receiving a great deal of attention as a way of providing the elderly with sustainable products, environments, and services combining gerontology and technology. One of the most important aspects to consider by gerontechnology is the mobility/rehabilitation technologies, because there is an important relationship between mobility and the elderly's quality of life. Telerehabilitation systems have emerged to allow the elderly to perform their rehabilitation exercises remotely. However, in many cases, the proposed systems assist neither the patients nor the experts about the progress of the rehabilitation. To address this problem, we propose in this paper, a fuzzy-semantic system for evaluating patient's physical state during the rehabilitation process based on well-known standard for patients' evaluation. Moreover, a tool called FINE has been developed that facilitates the evaluation be accomplished in a semi-automatic way first asking patients to carry out a set of standard tests and then inferencing their state by means of a fuzzy-semantic approach using the data captured during the rehabilitation tasks.This research was funded by the Spanish Ministry of Economy and Competitiveness and by EU FEDER funds under project grants TIN2016-79100-R and TIN2015-72931-EXP. It has also been funded by the Junta de Comunidades de CastillaÂżLa Mancha scholarship 2018-UCLM1-9131Moya, A.; Navarro, E.; JaĂ©n MartĂ­nez, FJ.; GonzĂĄlez, P. (2020). Fuzzy-description logic for supporting the rehabilitation of the elderly. Expert Systems. 37(2):1-16. https://doi.org/10.1111/exsy.12464116372Alamri, A., Cha, J., & El Saddik, A. (2010). AR-REHAB: An Augmented Reality Framework for Poststroke-Patient Rehabilitation. IEEE Transactions on Instrumentation and Measurement, 59(10), 2554-2563. doi:10.1109/tim.2010.2057750Antoniou, G., & van Harmelen, F. (2004). Web Ontology Language: OWL. Handbook on Ontologies, 67-92. doi:10.1007/978-3-540-24750-0_4Bobillo F.(2008).Managing vagueness in ontologies. Universidad de Granada.Bobillo F. (2015).The fuzzyDL system. Retrieved July 10 2018 fromhttp://www.umbertostraccia.it/cs/software/fuzzyDL/fuzzyDL.htmlBobillo, F., Delgado, M., & GĂłmez-Romero, J. (2012). DeLorean: A reasoner for fuzzy OWL 2. Expert Systems with Applications, 39(1), 258-272. doi:10.1016/j.eswa.2011.07.016Bobillo, F., & Straccia, U. (2016). The fuzzy ontology reasoner fuzzyDL. Knowledge-Based Systems, 95, 12-34. doi:10.1016/j.knosys.2015.11.017Boucenna, S., Narzisi, A., Tilmont, E., Muratori, F., Pioggia, G., Cohen, D., & Chetouani, M. (2014). Interactive Technologies for Autistic Children: A Review. Cognitive Computation, 6(4), 722-740. doi:10.1007/s12559-014-9276-xCarter J. E. L.(2002).The Heath‐Carter anthropometric somatotype—Instruction manual. San Diego:State University.Chiu, Y.-H., Chen, T.-W., Chen, Y. J., Su, C.-I., Hwang, K.-S., & Ho, W.-H. (2018). Fuzzy logic-based mobile computing system for hand rehabilitation after neurological injury. Technology and Health Care, 26(1), 17-27. doi:10.3233/thc-171403FernĂĄndez-Caballero, A., GonzĂĄlez, P., & Navarro, E. (2017). Gerontechnologies - Current achievements and future trends. Expert Systems, 34(2), e12203. doi:10.1111/exsy.12203Giles, R. (1976). Ɓukasiewicz logic and fuzzy set theory. International Journal of Man-Machine Studies, 8(3), 313-327. doi:10.1016/s0020-7373(76)80003-xHsieh, Y.-W., Hsueh, I.-P., Chou, Y.-T., Sheu, C.-F., Hsieh, C.-L., & Kwakkel, G. (2007). Development and Validation of a Short Form of the Fugl-Meyer Motor Scale in Patients With Stroke. Stroke, 38(11), 3052-3054. doi:10.1161/strokeaha.107.490730Karime, A., Eid, M., Alja’am, J. M., Saddik, A. E., & Gueaieb, W. (2014). A Fuzzy-Based Adaptive Rehabilitation Framework for Home-Based Wrist Training. IEEE Transactions on Instrumentation and Measurement, 63(1), 135-144. doi:10.1109/tim.2013.2277536Krynicki, K., Jaen, J., & Navarro, E. (2016). An ACO-based personalized learning technique in support of people with acquired brain injury. Applied Soft Computing, 47, 316-331. doi:10.1016/j.asoc.2016.04.039Leap Motion INC. (2018).Leap Motion. Retrieved July 10 2018 fromhttps://www.leapmotion.com/Lukasiewicz, T., & Straccia, U. (2008). Managing uncertainty and vagueness in description logics for the Semantic Web. Journal of Web Semantics, 6(4), 291-308. doi:10.1016/j.websem.2008.04.001Metz, D. . (2000). Mobility of older people and their quality of life. Transport Policy, 7(2), 149-152. doi:10.1016/s0967-070x(00)00004-4Nassabi M. H. Den Akker H. &Vollenbroek‐Hutten M. (2014).An ontology‐based recommender system to promote physical activity for pre‐frail elderly 181–184.Navarro, E., GonzĂĄlez, P., LĂłpez-Jaquero, V., Montero, F., Molina, J. P., & Romero-Ayuso, D. (2018). Adaptive, Multisensorial, Physiological and Social: The Next Generation of Telerehabilitation Systems. Frontiers in Neuroinformatics, 12. doi:10.3389/fninf.2018.00043OpenNI Pioneering Members. (2018).OpenNI. Retrieved July 10 2018 fromhttp://openni.ru/about/index.htmlOrbbec 3D. (2018).Orbbec Astra Pro. Retrieved July 10 2018 fromhttps://orbbec3d.com/product‐astra‐pro/RodrĂ­guez, A. C., Roda, C., Montero, F., GonzĂĄlez, P., & Navarro, E. (2015). An Interactive Fuzzy Inference System for Teletherapy of Older People. Cognitive Computation, 8(2), 318-335. doi:10.1007/s12559-015-9356-6Shaughnessy, M., Resnick, B. M., & Macko, R. F. (2006). Testing a Model of Post-Stroke Exercise Behavior. Rehabilitation Nursing, 31(1), 15-21. doi:10.1002/j.2048-7940.2006.tb00005.xSu, C.-J., Chiang, C.-Y., & Huang, J.-Y. (2014). Kinect-enabled home-based rehabilitation system using Dynamic Time Warping and fuzzy logic. Applied Soft Computing, 22, 652-666. doi:10.1016/j.asoc.2014.04.020Velozo, C. A., & Woodbury, M. L. (2011). Translating measurement findings into rehabilitation practice: An example using Fugl-Meyer Assessment-Upper Extremity with patients following stroke. The Journal of Rehabilitation Research and Development, 48(10), 1211. doi:10.1682/jrrd.2010.10.0203W3C. (2012).OWL 2 web ontology language. Retrieved July 10 2018 from https://www.w3.org/TR/owl2‐overview/Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-xZhang, Z., Fang, Q., & Gu, X. (2014). Fuzzy inference system based automatic Brunnstrom stage classification for upper-extremity rehabilitation. Expert Systems with Applications, 41(4), 1973-1980. doi:10.1016/j.eswa.2013.08.09

    SHELDON Smart habitat for the elderly.

    Get PDF
    An insightful document concerning active and assisted living under different perspectives: Furniture and habitat, ICT solutions and Healthcare

    Age and Interface Equipping Older Adults with Technological Tools

    Get PDF
    Older adults around the world experience physical, psychological, social and economic issues that hinder their learning processes, performance in simple daily activities and other factors that facilitate a healthy lifestyle. Human factors associated with ageing such as poor motor skills, weakening of hearing/eyesight, slower reflexes, low stamina and deteriorating attention span/memory obstruct them from using digital tools like younger adults. Although the degree of impact may differ from person to person, these factors could be considered a gradual and dynamic process. In today’s age, it is crucial to be aware of one’s surroundings, to be updated with the latest news, to be improving one’s knowledge and to remain socially connected. The ongoing COVID-19 pandemic made us realize that access to a steady internet is a necessity and not a luxury. In recent years, several communities have observed that older adults find using the internet and technologies challenging. In 2019, statistics by Pew Research Center presented that only 53% of people aged above 65+ years owned smartphones. The objective of this project is to promote digital literacy, and to empower and build confidence among older adults. This research will provide insights and factual data and introduce strategies to improve human-centred design services specific to the older population intended to help them in the process of embracing modern technology. Surveying the current research on the issues regarding the challenges older adult's face while using technology, the research outcome involves an accessible online publication specifically tailored for the target user demographic, to teach them how to use technology. The second outcome of this research is a web-based platform containing tutorials for older adults about performing various tasks via smartphones and computers

    Senior Entrepreneurship: The Unrevealed Driver for Social Innovation

    Get PDF
    From a political and economic perspective, senior entrepreneurship seems to be the response to the demographic consequences of the aging workforce in Europe. Several policies and strategies by the European Union (EU) and the Organization for Economic Co-operation and Development (OECD) promote senior entrepreneurship by creating a favorable environment and frameworks. This article examines the role of senior entrepreneurship as a social innovation understood as a response to unmet needs of population aging in the area of economic activity. In this paper draws on qualitative interviews with 6 experts and 4 senior entrepreneurs (as part of a larger research project) in Poland in addition to the analysis of reports and evaluations of incubator projects. Findings highlight the importance of other factors than financial sustainability of senior entrepreneurship: (1) social connectedness as a means against social isolation, (2) personal self-confidence leading to social and psychological empowerment of the entrepreneurs, and (3) skills, knowledge, and experience that are also strengthening their human capital in the job market. Economic sustainability of the businesses established is not the primary goal in these undertakings. The article suggests that due to the three factors before mentioned that the notion of social innovation in senior entrepreneurship might best be understood as improving the well-being and quality of life of the entrepreneurs themselves. Senior entrepreneurship can be an adequate response to the challenges of the aging population. However, due to the low rates of unemployment, the idea of becoming a senior entrepreneur appears a little tempting

    Unmet goals of tracking: within-track heterogeneity of students' expectations for

    Get PDF
    Educational systems are often characterized by some form(s) of ability grouping, like tracking. Although substantial variation in the implementation of these practices exists, it is always the aim to improve teaching efficiency by creating homogeneous groups of students in terms of capabilities and performances as well as expected pathways. If students’ expected pathways (university, graduate school, or working) are in line with the goals of tracking, one might presume that these expectations are rather homogeneous within tracks and heterogeneous between tracks. In Flanders (the northern region of Belgium), the educational system consists of four tracks. Many students start out in the most prestigious, academic track. If they fail to gain the necessary credentials, they move to the less esteemed technical and vocational tracks. Therefore, the educational system has been called a 'cascade system'. We presume that this cascade system creates homogeneous expectations in the academic track, though heterogeneous expectations in the technical and vocational tracks. We use data from the International Study of City Youth (ISCY), gathered during the 2013-2014 school year from 2354 pupils of the tenth grade across 30 secondary schools in the city of Ghent, Flanders. Preliminary results suggest that the technical and vocational tracks show more heterogeneity in student’s expectations than the academic track. If tracking does not fulfill the desired goals in some tracks, tracking practices should be questioned as tracking occurs along social and ethnic lines, causing social inequality

    Feature Papers "Age-Friendly Cities & Communities: State of the Art and Future Perspectives"

    Get PDF
    The "Age-Friendly Cities & Communities: States of the Art and Future Perspectives" publication presents contemporary, innovative, and insightful narratives, debates, and frameworks based on an international collection of papers from scholars spanning the fields of gerontology, social sciences, architecture, computer science, and gerontechnology. This extensive collection of papers aims to move the narrative and debates forward in this interdisciplinary field of age-friendly cities and communities

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio
    corecore