3,174,500 research outputs found

    Listening in/To Germany, Pale Mother

    Get PDF
    A newly restored version of Helma Sanders-Brahms’ 1980 film, Deutschland, bleiche Mutter (Germany, Pale Mother), was premiered in 2014 as a “Berlinale Classic”. This article reveals a complex composition of archival and (re)constructed sound that amplifies the film’s problematisation of the relationship between public history and private memory and the competing claims to authenticity and authority in telling the stories of the past

    Observed Fractions of Core-Collapse Supernova Types and Initial Masses of their Single and Binary Progenitor Stars

    Full text link
    We analyse observed fractions of core-collapse SN types from the Lick Observatory SN Search, and we discuss corresponding implications for massive star evolution. For a standard IMF, observed fractions of SN types cannot be reconciled with expectations of single-star evolution. The mass range of WR stars that shed their H envelopes via their own mass loss accounts for less than half the observed fraction of SNeIbc. Progenitors of SNeIbc must extend to a much lower range of initial masses than classical WR stars, and we argue that most SNIbc and SNIIb progenitors must arise from binary Roche-lobe overflow. SNeIc still trace higher mass and metallicity, because line-driven winds in the WR stage remove the He layer and propel the transition from SNIb to Ic. Less massive progenitors of SNeIb and IIb may not be classical WR stars; they may be underluminous with weak winds, possibly hidden by overluminous mass-gainer companions that appear as B[e] supergiants or related objects having aspherical circumstellar material. The remaining SN types (II-P, II-L, and IIn) are redistributed across the full range of initial mass. We consider direct collapse to black holes without visible SNe, but find this problematic. Major areas of remaining uncertainty are (1) the influence of binary separation, rotation, and metallicity, (2) mass differences in progenitors of SNeIIn compared to SNeII-L and II-P, and (3) SNeIc arising from single stars with eruptive mass loss, its dependence on metallicity, and how it relates to diversity within the SNIc subclass. (abridged)Comment: MNRAS accepted, 18 pages, 8 Figures, 1 color figur

    Numerical models of collisions between core-collapse supernovae and circumstellar shells

    Get PDF
    Recent observations of luminous Type IIn supernovae (SNe) provide compelling evidence that massive circumstellar shells surround their progenitors. In this paper we investigate how the properties of such shells influence the SN lightcurve by conducting numerical simulations of the interaction between an expanding SN and a circumstellar shell ejected a few years prior to core collapse. Our parameter study explores how the emergent luminosity depends on a range of circumstellar shell masses, velocities, geometries, and wind mass-loss rates, as well as variations in the SN mass and energy. We find that the shell mass is the most important parameter, in the sense that higher shell masses (or higher ratios of M_shell/M_SN) lead to higher peak luminosities and higher efficiencies in converting shock energy into visual light. Lower mass shells can also cause high peak luminosities if the shell is slow or if the SN ejecta are very fast, but only for a short time. Sustaining a high luminosity for durations of more than 100 days requires massive circumstellar shells of order 10 M_sun or more. This reaffirms previous comparisons between pre-SN shells and shells produced by giant eruptions of luminous blue variables (LBVs), although the physical mechanism responsible for these outbursts remains uncertain. The lightcurve shape and observed shell velocity can help diagnose the approximate size and density of the circumstellar shell, and it may be possible to distinguish between spherical and bipolar shells with multi-wavelength lightcurves. These models are merely illustrative. One can, of course, achieve even higher luminosities and longer duration light curves from interaction by increasing the explosion energy and shell mass beyond values adopted here.Comment: Accepted for publication in MNRAS. Tables of numerical results (SN lightcurves and velocities) to be published online. (Updated to fix figures

    The Extreme Hosts of Extreme Supernovae

    Full text link
    We use GALEX ultraviolet (UV) and optical integrated photometry of the hosts of seventeen luminous supernovae (LSNe, having peak M_V < -21) and compare them to a sample of 26,000 galaxies from a cross-match between the SDSS DR4 spectral catalog and GALEX interim release 1.1. We place the LSNe hosts on the galaxy NUV-r versus M_r color magnitude diagram (CMD) with the larger sample to illustrate how extreme they are. The LSN hosts appear to favor low-density regions of the galaxy CMD falling on the blue edge of the blue cloud toward the low luminosity end. From the UV-optical photometry, we estimate the star formation history of the LSN hosts. The hosts have moderately low star formation rates (SFRs) and low stellar masses (M_*) resulting in high specific star formation rates (sSFR). Compared with the larger sample, the LSN hosts occupy low-density regions of a diagram plotting sSFR versus M_* in the area having higher sSFR and lower M_*. This preference for low M_*, high sSFR hosts implies the LSNe are produced by an effect having to do with their local environment. The correlation of mass with metallicity suggests that perhaps wind-driven mass loss is the factor that prevents LSNe from arising in higher-mass, higher-metallicity hosts. The massive progenitors of the LSNe (>100 M_sun), by appearing in low-SFR hosts, are potential tests for theories of the initial mass function that limit the maximum mass of a star based on the SFR.Comment: 8 pages, 3 figures, 2 tables, accepted to ApJ, amended references and updated SN designation

    Hyperaccreting Disks around Magnetars for Gamma-Ray Bursts: Effects of Strong Magnetic Fields

    Full text link
    (Abridged) The hyperaccreting neutron star or magnetar disks cooled via neutrino emission can be a candidate of gamma-ray burst (GRB) central engines. The strong field 10151016\geq10^{15}-10^{16} G of the magnetar can play a significant role in affecting the disk properties and even lead to the funnel accretion process. We investigate the effects of strong fields on the disks around magnetars, and discuss implications of such accreting magnetar systems for GRB and GRB-like events. We discuss quantum effects of the strong fields on the disk, and use the MHD conservation equations to describe the behavior of the disk flow coupled with a large scale field, which is generated by the star-disk interaction. In general, stronger fields give higher disk densities, pressures, temperatures and neutrino luminosity, and change the electron fraction and degeneracy state significantly. A magnetized disk is always viscously stable outside the Alfv\'{e}n radius, but will be thermally unstable near the Alfv\'{e}n radius where the magnetic field plays a more important role in transferring the angular momentum and heating the disk than the viscous stress. The funnel accretion process will be only important for an extremely strong field, which creates a magnetosphere inside the Alfv\'{e}n radius and truncates the plane disk. Because of higher temperature and more concentrated neutrino emission of the magnetar surface ring-like belt region covered by funnel accretion, the neutrino annihilation rate from the accreting magnetars can be much higher than that from accreting neutron stars without fields. Furthermore, the neutrino annihilation mechanism and the magnetically-driven pulsar wind from the magnetar surface can work together to generate and feed an ultra-relativistic jet along the stellar magnetic poles.Comment: 62 pages, 14 figures, 4 tables, improved version following the referee's comments, accepted for publication in Ap

    The type IIn supernova 1994W: evidence for the explosive ejection of a circumstellar envelope

    Full text link
    We present and analyse spectra of the Type IIn supernova 1994W obtained between 18 and 203 days after explosion. During the luminous phase (first 100 d) the line profiles are composed of three major components: (i) narrow P-Cygni lines with the absorption minima at -700 km/s; (ii) broad emission lines with BVZI ~4000 km/s; and (iii) broad, smooth wings, most apparent in H-alpha. These components are identified with an expanding circumstellar (CS) envelope, shocked cool gas in the forward post-shock region, and multiple Thomson scattering in the CS envelope, respectively. The absence of broad P-Cygni lines from the supernova is the result of the formation of an optically thick, cool, dense shell at the interface of the ejecta and the CS envelope. We model the supernova deceleration and Thomson scattering wings to recover the density, radial extent and Thomson optical depth of the CS envelope during the first month. We reproduce the light curve with a hydrodynamical model and find it to be powered by a combination of internal energy leakage after the explosion of an extended pre-supernova (~10^15 cm) and luminosity from circumstellar interaction. We recover the pre-explosion kinematics of the CS envelope: it is close to homologous expansion with outer velocity ~1100 km/s and a kinematic age of ~1.5 yr. The CS envelope's high mass and kinetic energy, combined with its small age, strongly suggest that the CS envelope was explosively ejected about 1.5 yr before the supernova explosion.Comment: 22 pages, 21 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    SN 2006gy: was it really extra-ordinary?

    Full text link
    We present an optical photometric and spectroscopic study of the very luminous type IIn SN 2006gy for a time period spanning more than one year. In photometry, a broad, bright (M_R~-21.7) peak characterizes all BVRI light curves. Afterwards, a rapid luminosity fading is followed by a phase of slow luminosity decline between day ~170 and ~237. At late phases (>237 days), because of the large luminosity drop (>3 mag), only upper visibility limits are obtained in the B, R and I bands. In the near-infrared, two K-band detections on days 411 and 510 open new issues about dust formation or IR echoes scenarios. At all epochs the spectra are characterized by the absence of broad P-Cygni profiles and a multicomponent Halpha profile, which are the typical signatures of type IIn SNe. After maximum, spectroscopic and photometric similarities are found between SN 2006gy and bright, interaction-dominated SNe (e.g. SN 1997cy, SN 1999E and SN 2002ic). This suggests that ejecta-CSM interaction plays a key role in SN 2006gy about 6 to 8 months after maximum, sustaining the late-time-light curve. Alternatively, the late luminosity may be related to the radioactive decay of ~3M_sun of 56Ni. Models of the light curve in the first 170 days suggest that the progenitor was a compact star (R~6-8 10^(12)cm, M_ej~5-14M_sun), and that the SN ejecta collided with massive (6-10M_sun), opaque clumps of previously ejected material. These clumps do not completely obscure the SN photosphere, so that at its peak the luminosity is due both to the decay of 56Ni and to interaction with CSM. A supermassive star is not required to explain the observational data, nor is an extra-ordinarily large explosion energy.Comment: 33 pages, 8 figures. Accepted by ApJ. Paper with high-resolution figures available at http://web.oapd.inaf.it/supern/sn2006gy_astroph/agnoletto_2006gy.pd

    SN 2009E: a faint clone of SN 1987A

    Get PDF
    In this paper we investigate the properties of SN 2009E, which exploded in a relatively nearby spiral galaxy (NGC 4141) and that is probably the faintest 1987A-like supernova discovered so far. Spectroscopic observations which started about 2 months after the supernova explosion, highlight significant differences between SN 2009E and the prototypical SN 1987A. Modelling the data of SN 2009E allows us to constrain the explosion parameters and the properties of the progenitor star, and compare the inferred estimates with those available for the similar SNe 1987A and 1998A. The light curve of SN 2009E is less luminous than that of SN 1987A and the other members of this class, and the maximum light curve peak is reached at a slightly later epoch than in SN 1987A. Late-time photometric observations suggest that SN 2009E ejected about 0.04 solar masses of 56Ni, which is the smallest 56Ni mass in our sample of 1987A-like events. Modelling the observations with a radiation hydrodynamics code, we infer for SN 2009E a kinetic plus thermal energy of about 0.6 foe, an initial radius of ~7 x 10^12 cm and an ejected mass of ~19 solar masses. The photospheric spectra show a number of narrow (v~1800 km/s) metal lines, with unusually strong Ba II lines. The nebular spectrum displays narrow emission lines of H, Na I, [Ca II] and [O I], with the [O I] feature being relatively strong compared to the [Ca II] doublet. The overall spectroscopic evolution is reminiscent of that of the faint 56Ni-poor type II-plateau supernovae. This suggests that SN 2009E belongs to the low-luminosity, low 56Ni mass, low-energy tail in the distribution of the 1987A-like objects in the same manner as SN 1997D and similar events represent the faint tail in the distribution of physical properties for normal type II-plateau supernovae.Comment: 19 pages, 9 figures (+7 in appendix); accepted for publication in A&A on 3 November 201

    Evidence for Supernova Signatures in the Spectrum of the Late-time Bump of the Optical Afterglow of GRB 021211

    Full text link
    We present photometric and spectroscopic observations of the gamma-ray burst GRB 021211 obtained during the late stages of its afterglow. The light curve shows a rebrightening occurring ~25 days after the GRB. The analysis of a VLT spectrum obtained during the bump (27 days after the GRB) reveals a suggestive resemblance with the spectrum of the prototypical type-Ic SN 1994I, obtained about ~10 days past maximum light. Particularly we have measured a strong, broad absorption feature at 3770 A, which we have identified with Ca II blueshifted by ~14400 km/s, thus indicating that a supernova (SN) component is indeed powering the `bump' in the afterglow decay. Assuming SN 1994I as a template, the spectroscopic and photometric data together indicate that the SN and GRB explosions were at most separated by a few days. Our results suggest that GRBs might be associated also to standard type-Ic supernovae.Comment: 6 pages, 4 color figures. Accepted for publication in A&A Letters. Fig. 4 does not appair in the A&A version due to space restrictions. Includes aa.cls and txfonts.st
    corecore