2,610 research outputs found

    Tessera terrain: Characteristics and models of origin

    Get PDF
    Tessera terrain consists of complexly deformed regions characterized by sets of ridges and valleys that intersect at angles ranging from orthogonal to oblique, and were first viewed in Venera 15/16 SAR data. Tesserae cover more area (approx. 15 percent of the area north of 30 deg N) than any of the other tectonic units mapped from the Venera data and are strongly concentrated in the region between longitudes 0 deg E and 150 deg E. Tessera terrain is concentrated between a proposed center of crustal extension and divergence in Aphrodite and a region of intense deformation, crustal convergence, and orogenesis in western Ishtar Terra. Thus, the tectonic processes responsible for tesserae are an important part of Venus tectonics. As part of an effort to understand the formation and evolution of this unusual terrain type, the basic characteristics of the tesserae were compared to the predictions made by a number of tectonic models. The basic characteristics of tessera terrain are described and the models and some of their basic predictions are briefly discussed

    Radar scattering from desert terrains, Pisgah/Lavic Region, California: Implications for Magellan

    Get PDF
    A major component of the 1988 Mojave Field Experiment involved the simultaneous acquisition of quad-polarization multifrequency airborne Synthetic Aperture Radar (SAR) imaging radar data and ground measurements thought to be relevant to the radar scattering behavior of a variety of desert surfaces. In preparation for the Magellan mission to Venus, the experiment was designed to explore the ability of SAR to distinguish types of geological surfaces, and the effects of varying incidence angles on the appearance of such surfaces. The airborne SAR system acquired images at approx. 10 m resolution, at 3 incidence angles (30, 40, 50 degs) and at 3 wavelengths (P:68 cm, L:24 cm, C:5.6 cm). The polarimetric capabilities of the instrument allow the simulation of any combination of transmit and receive polarizations during data reduction. Calibrated trihedral corner reflectors were deployed within each scene to permit absolute radiometric calibration of the image data. Initial analyses of this comprehensive radar data set is reported, with emphasis on implications for interpretation of Magellan data

    Results of a zonally truncated three-dimensional model of the Venus middle atmosphere

    Get PDF
    Although the equatorial rotational speed of the solid surface of Venus is only 4 m s(exp-1), the atmospheric rotational speed reaches a maximum of approximately 100 m s(exp-1) near the equatorial cloud top level (65 to 70 km). This phenomenon, known as superrotation, is the central dynamical problem of the Venus atmosphere. We report here the results of numerical simulations aimed at clarifying the mechanism for maintaining the equatorial cloud top rotation. Maintenance of an equatorial rotational speed maximum above the surface requires waves or eddies that systematically transport angular momentum against its zonal mean gradient. The zonally symmetric Hadley circulation is driven thermally and acts to reduce the rotational speed at the equatorial cloud top level; thus wave or eddy transport must counter this tendency as well as friction. Planetary waves arising from horizontal shear instability of the zonal flow (barotropic instability) could maintain the equatorial rotation by transporting angular momentum horizontally from midlatitudes toward the equator. Alternatively, vertically propagating waves could provide the required momentum source. The relative motion between the rotating atmosphere and the pattern of solar heating, which as a maximum where solar radiation is absorbed near the cloud tops, drives diurnal and semidiurnal thermal tides that propagate vertically away from the cloud top level. The effect of this wave propagation is to transport momentum toward the cloud top level at low latitudes and accelerate the mean zonal flow there. We employ a semispectral primitive equation model with a zonal mean flow and zonal wavenumbers 1 and 2. These waves correspond to the diurnal and semidiurnal tides, but they can also be excited by barotropic or baroclinic instability. Waves of higher wavenumbers and interactions between the waves are neglected. Symmetry about the equator is assumed, so the model applies to one hemisphere and covers the altitude range 30 to 110 km. Horizontal resolution is 1.5 deg latitude, and vertical resolution is 1.5 km. Solar and thermal infrared heating, based on Venus observations and calculations drive the model flow. Dissipation is accomplished mainly by Rayleigh friction, chosen to produce strong dissipation above 85 km in order to absorb upward propagating waves and limit extreme flow velocities there, yet to give very weak Rayleigh friction below 70 km; results in the cloud layer do not appear to be sensitive to the Rayleigh friction. The model also has weak vertical diffusion, and very weak horizontal diffusion, which has a smoothing effect on the flow only at the two grid points nearest the pole

    The gabbro-eclogite phase transition and the elevation of mountain belts on Venus

    Get PDF
    Among the four mountain belts surrounding Lakshmi Planum, Maxwell Montes is the highest and stands up to 11 km above the mean planetary radius and 7 km above Lakshmi Planum. The bulk composition and radioactive heat production of the crust on Venus, where measured, are similar to those of terrestrial tholeiitic basalt. Because the thickness of the low-density crust may be limited by the gabbro-garnet granulite-eclogite phase transitions, the 7-11 km maximum elevation of Maxwell Montes is difficult to understand except in the unlikely situation that the crust contains a large volume of magma. A possible explanation is that the base of the crust is not in phase equilibrium. It has been suggested that under completely dry conditions, the gabbro-eclogite phase transition takes place by solid-state diffusion and may require a geologically significant time to run to completion. Solid-state diffusion is a strongly temperature-dependent process. In this paper we solve the thermal evolution of the mountain belt to attempt to constrain the depth of the gabbro-eclogite transition and thus to assess this hypothesis quantitatively. The one-dimensional heat equation is solved numerically by a finite difference approximation. The deformation of the horizontally shortening crustal and mantle portions of the thermal boundary layer is assumed to occur by pure shear, and therefore the vertical velocity is given by the product of the horizontal strain rate and depth

    The structural evolution of dunite and chromite ore from the Kharcheruz massif, the Polar Urals

    Get PDF
    The Kharcheruz block of the Syumkeu ultramafic massif is a southern fragment of the Khadata ophiolitic belt, which closes the ophiolites of the Polar Urals in the north. The block, striking in the latitudinal direction, is sheetlike in shape and primarily composed of dunite with nearly latitudinal zones of chromite mineralization. The dunites are subject to ductile deformation various in intensity, and this variability is displayed in their heterogeneous structure and texture. The following microstructural types are distinguished by the variety and intensity of their deformation: protogranular → mesogranular → porphyroclastic → porphyrolath → mosaic. The petrostructural patterns of olivines pertaining to the above types reflect conditions of ductile deformation. Protogranular dunite is formed as a product of pyroxene decomposition in mantle harzburgite accompanied by annealing recrystallization at a temperature above 1000°C. Mesogranular dunite is formed as a product of high-temperature plastic flow by means of translation sliding in olivine and diffuse creep at a temperature dropping from 1000 to 650°C and at a low rate (10–6 s–1). Dunite is deformed by means of syntectonic recrystallization and subordinate translation gliding. Linear zones of disseminated mineralization undergo destruction thereby, with the formation of lenticular chromitite bodies from which ductile olivine is squeezed out with the formation of densely impregnated and massive ores

    Tectonics and volcanisms of Mars

    Get PDF
    Televised images of Mars transmitted from interplanetary stations are used to develop a theory of the structure and development of the planet. Crater chronology, the structure of planetary bodies in the Earth group, and a comparison of the Earth planetary bodies are among the factors included

    Impact of GRM: New evidence from the Soviet Union

    Get PDF
    Gravity information released by the Soviet Union allows the quantitative assessment of how the geopotential research mission (GRM) mission might effect the ability to use global gravity data for continental tectonic interpretation. The information is of an isostatic response spectra for eight individual tectonic units in the USSR. The regions examined include the Caroathians, Caucasus, Urals, Pamirs, Tien-Shan, Altal, Chersky Ridge, and East Siberian Platform. The 1 deg x 1 deg gravity data are used to calculate the admittances are used in two different sorts of tectonic studies of mountain belts in the USSR: (1) interpretation of isostatic responses in terms of plate models of compensation for mountainous terrain. Using geologic information concerning time of the orogeny, lithospheric plates involved, and polarity of subduction in collision zones, they convert the best-fitting flexural rigidity to an elastic plate thickness for the lithospheric plate inferred to underlie the mountains; the isostatic admittance functions is an attempt to directly model gravity and topography data for a few select regions in the Soviet Union. By knowing the value of the expected correlation between topography and gravity from the admittances, the Artemjev's map in mountainous areas can be calibrated, and the maps are converted back to Bouguer gravity. This procedure is applied to the Caucasus and southern Urals
    corecore