3,786 research outputs found

    Towards automated knowledge-based mapping between individual conceptualisations to empower personalisation of Geospatial Semantic Web

    No full text
    Geospatial domain is characterised by vagueness, especially in the semantic disambiguation of the concepts in the domain, which makes defining universally accepted geo- ontology an onerous task. This is compounded by the lack of appropriate methods and techniques where the individual semantic conceptualisations can be captured and compared to each other. With multiple user conceptualisations, efforts towards a reliable Geospatial Semantic Web, therefore, require personalisation where user diversity can be incorporated. The work presented in this paper is part of our ongoing research on applying commonsense reasoning to elicit and maintain models that represent users' conceptualisations. Such user models will enable taking into account the users' perspective of the real world and will empower personalisation algorithms for the Semantic Web. Intelligent information processing over the Semantic Web can be achieved if different conceptualisations can be integrated in a semantic environment and mismatches between different conceptualisations can be outlined. In this paper, a formal approach for detecting mismatches between a user's and an expert's conceptual model is outlined. The formalisation is used as the basis to develop algorithms to compare models defined in OWL. The algorithms are illustrated in a geographical domain using concepts from the SPACE ontology developed as part of the SWEET suite of ontologies for the Semantic Web by NASA, and are evaluated by comparing test cases of possible user misconceptions

    Technology Integration around the Geographic Information: A State of the Art

    Get PDF
    One of the elements that have popularized and facilitated the use of geographical information on a variety of computational applications has been the use of Web maps; this has opened new research challenges on different subjects, from locating places and people, the study of social behavior or the analyzing of the hidden structures of the terms used in a natural language query used for locating a place. However, the use of geographic information under technological features is not new, instead it has been part of a development and technological integration process. This paper presents a state of the art review about the application of geographic information under different approaches: its use on location based services, the collaborative user participation on it, its contextual-awareness, its use in the Semantic Web and the challenges of its use in natural languge queries. Finally, a prototype that integrates most of these areas is presented

    Geospatial Data Management Research: Progress and Future Directions

    Get PDF
    Without geospatial data management, today´s challenges in big data applications such as earth observation, geographic information system/building information modeling (GIS/BIM) integration, and 3D/4D city planning cannot be solved. Furthermore, geospatial data management plays a connecting role between data acquisition, data modelling, data visualization, and data analysis. It enables the continuous availability of geospatial data and the replicability of geospatial data analysis. In the first part of this article, five milestones of geospatial data management research are presented that were achieved during the last decade. The first one reflects advancements in BIM/GIS integration at data, process, and application levels. The second milestone presents theoretical progress by introducing topology as a key concept of geospatial data management. In the third milestone, 3D/4D geospatial data management is described as a key concept for city modelling, including subsurface models. Progress in modelling and visualization of massive geospatial features on web platforms is the fourth milestone which includes discrete global grid systems as an alternative geospatial reference framework. The intensive use of geosensor data sources is the fifth milestone which opens the way to parallel data storage platforms supporting data analysis on geosensors. In the second part of this article, five future directions of geospatial data management research are presented that have the potential to become key research fields of geospatial data management in the next decade. Geo-data science will have the task to extract knowledge from unstructured and structured geospatial data and to bridge the gap between modern information technology concepts and the geo-related sciences. Topology is presented as a powerful and general concept to analyze GIS and BIM data structures and spatial relations that will be of great importance in emerging applications such as smart cities and digital twins. Data-streaming libraries and “in-situ” geo-computing on objects executed directly on the sensors will revolutionize geo-information science and bridge geo-computing with geospatial data management. Advanced geospatial data visualization on web platforms will enable the representation of dynamically changing geospatial features or moving objects’ trajectories. Finally, geospatial data management will support big geospatial data analysis, and graph databases are expected to experience a revival on top of parallel and distributed data stores supporting big geospatial data analysis

    Conservation GIS: Ontology and spatial reasoning for commonsense knowledge.

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies.Geographic information available from multiple sources are moving beyond their local context and widening the semantic difference. The major challenge emerged with ubiquity of geographic information, evolving geospatial technology and location-aware service is to deal with the semantic interoperability. Although the use of ontology aims at capturing shared conceptualization of geospatial information, human perception of world view is not adequately addressed in geospatial ontology. This study proposes ‘Conservation GIS Ontology’ that comprises spatial knowledge of non-expert conservationists in the context of Chitwan National Park, Nepal. The discussion is presented in four parts: exploration of commonsense spatial knowledge about conservation; development of conceptual ontology to conceptualize domain knowledge; formal representation of conceptualization in Web Ontology Language (OWL); and quality assessment of the ontology development tasks. Elicitation of commonsense spatial knowledge is performed with the notion of cognitive view of semantic. Emphasis is given to investigate the observation of wildlife movement and habitat change scenarios. Conceptualization is carried out by providing the foundation of the top-level ontology- ‘DOLCE’ and geospatial ontologies. Protégé 4.1 ontology editor is employed for ontology engineering tasks. Quality assessment is accomplished based on the intrinsic approach of ontology evaluation.(...

    Geospatial information infrastructures

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Geospatial information infrastructures (GIIs) provide the technological, semantic,organizationalandlegalstructurethatallowforthediscovery,sharing,and use of geospatial information (GI). In this chapter, we introduce the overall concept and surrounding notions such as geographic information systems (GIS) and spatial datainfrastructures(SDI).WeoutlinethehistoryofGIIsintermsoftheorganizational andtechnologicaldevelopmentsaswellasthecurrentstate-of-art,andreflectonsome of the central challenges and possible future trajectories. We focus on the tension betweenincreasedneedsforstandardizationandtheever-acceleratingtechnological changes. We conclude that GIIs evolved as a strong underpinning contribution to implementation of the Digital Earth vision. In the future, these infrastructures are challengedtobecomeflexibleandrobustenoughtoabsorbandembracetechnological transformationsandtheaccompanyingsocietalandorganizationalimplications.With this contribution, we present the reader a comprehensive overview of the field and a solid basis for reflections about future developments

    A Framework for Semantic Interoperability for Distributed Geospatial Repositories

    Get PDF
    Interoperable access of geospatial information across disparate geospatial applications has become essential. Geospatial data are highly heterogeneous -- the heterogeneity arises both at the syntactic and semantic levels. Finding and accessing appropriate data in such a distributed environment is an important research issue. The paper proposes a methodology for interoperable access of geospatial information based on Open Geospatial Consortium (OGC) specified standards. An architecture for integrating diverse geospatial data repositories has been proposed using service-based methodology. The semantic issues for discovery and retrieval of geospatial data over distributed geospatial services have also been proposed in the paper. The proposed architecture utilizes the ontological concepts for service description and subsequent discovery of services. An approach for semantic similarity assessment of geospatial services has been discussed

    The Hierarchic treatment of marine ecological information from spatial networks of benthic platforms

    Get PDF
    Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.Peer ReviewedPostprint (published version

    Modeling emergency management data by UML as an extension of geographic data sharing model: AST approach

    Get PDF
    Applying GIS functionality provides a powerful decision support in various application areas and the basis to integrate policies directed to citizens, business, and governments. The focus is changing toward integrating these functions to find optimal solutions to complex problems. As an integral part of this approach, geographic data sharing model for Turkey were developed as a new approach that enables using the data corporately and effectively. General features of this model are object-oriented model, based on ISO/TC211 standards and INSPIRE Data Specifications, describing nationwide unique object identifiers, and defining a mechanism to manage object changes through time. The model is fully described with Unified Modeling Language (UML) class diagram. This can be a starting point for geographic data providers in Turkey to create sector models like Emergency Management that has importance because of the increasing number of natural and man-made disasters. In emergency management, this sector model can provide the most appropriate data to many "Actors" that behave as emergency response organizations such as fire and medical departments. Actors work in "Sectors" such as fire department and urban security. Each sector is responsible for "Activities" such as traffic control, fighting dire, emission, and so on. "Tasks" such as registering incident, fire response, and evacuating area are performed by actors and part of activity. These tasks produce information for emergency response and require information based on the base data model. By this way, geographic data models of emergency response are designed and discussed with "Actor-Sector-Activity-Task" classes as an extension of the base model with some cases from Turkey

    An Enhanced Spatial Reasoning Ontology for Maritime Anomaly Detection

    No full text
    International audienceAlthough originally conceived as a conceptual object for modelling knowledge, current ontologies do not make it possible to manipulate spatial knowledge. However, spatial knowledge is an essential component of any modelling specification. This problem provided the motivation for the creation of an expert system driven by an ontology. The system enables experts in the maritime domain to characterise abnormal ship behaviour based on formal semantic properties. Users are able to specify and execute spatial rules that are directly integrated into the ontology and a map interface linked to the ontology displays the results of the inferences obtained
    corecore