444 research outputs found

    Multi-crop Contrastive Learning for Unsupervised Image-to-Image Translation

    Full text link
    Recently, image-to-image translation methods based on contrastive learning achieved state-of-the-art results in many tasks. However, the negatives are sampled from the input feature spaces in the previous work, which makes the negatives lack diversity. Moreover, in the latent space of the embedings,the previous methods ignore domain consistency between the generated image and the real images of target domain. In this paper, we propose a novel contrastive learning framework for unpaired image-to-image translation, called MCCUT. We utilize the multi-crop views to generate the negatives via the center-crop and the random-crop, which can improve the diversity of negatives and meanwhile increase the quality of negatives. To constrain the embedings in the deep feature space,, we formulate a new domain consistency loss function, which encourages the generated images to be close to the real images in the embedding space of same domain. Furthermore, we present a dual coordinate channel attention network by embedding positional information into SENet, which called DCSE module. We employ the DCSE module in the design of generator, which makes the generator pays more attention to channels with greater weight. In many image-to-image translation tasks, our method achieves state-of-the-art results, and the advantages of our method have been proved through extensive comparison experiments and ablation research

    Unsupervised Joint Image Transfer and Uncertainty Quantification Using Patch Invariant Networks

    Full text link
    Unsupervised image transfer enables intra- and inter-modality image translation in applications where a large amount of paired training data is not abundant. To ensure a structure-preserving mapping from the input to the target domain, existing methods for unpaired image transfer are commonly based on cycle-consistency, causing additional computational resources and instability due to the learning of an inverse mapping. This paper presents a novel method for uni-directional domain mapping that does not rely on any paired training data. A proper transfer is achieved by using a GAN architecture and a novel generator loss based on patch invariance. To be more specific, the generator outputs are evaluated and compared at different scales, also leading to an increased focus on high-frequency details as well as an implicit data augmentation. This novel patch loss also offers the possibility to accurately predict aleatoric uncertainty by modeling an input-dependent scale map for the patch residuals. The proposed method is comprehensively evaluated on three well-established medical databases. As compared to four state-of-the-art methods, we observe significantly higher accuracy on these datasets, indicating great potential of the proposed method for unpaired image transfer with uncertainty taken into account. Implementation of the proposed framework is released here: \url{https://github.com/anger-man/unsupervised-image-transfer-and-uq}.Comment: Accepted to ECCV 2022 Workshop on Uncertainty Quantification for Computer Vision (UNCV 2022

    Place Recognition under Occlusion and Changing Appearance via Disentangled Representations

    Full text link
    Place recognition is a critical and challenging task for mobile robots, aiming to retrieve an image captured at the same place as a query image from a database. Existing methods tend to fail while robots move autonomously under occlusion (e.g., car, bus, truck) and changing appearance (e.g., illumination changes, seasonal variation). Because they encode the image into only one code, entangling place features with appearance and occlusion features. To overcome this limitation, we propose PROCA, an unsupervised approach to decompose the image representation into three codes: a place code used as a descriptor to retrieve images, an appearance code that captures appearance properties, and an occlusion code that encodes occlusion content. Extensive experiments show that our model outperforms the state-of-the-art methods. Our code and data are available at https://github.com/rover-xingyu/PROCA
    • …
    corecore