1,000 research outputs found

    Geometry-based scene representation with distributed vision sensors.

    Get PDF
    This paper addresses the problem of efficient representation and compression of scenes captured by distributed vision sensors. We propose a novel geometrical model to describe the correlation between different views of a three-dimensional scene. We first approximate the camera images by sparse expansion over a dictionary of geometric atoms, as the most important visual features are likely to be equivalently dominant in images from multiple cameras. The correlation model is then built on local geometrical transformations between corresponding features taken in different views, where correspondences are defined based on shape and epipolar geometry constraints. Based on this geometrical framework, we design a distributed coding scheme with side information, which builds an efficient representation of the scene without communication between cameras. The Wyner-Ziv encoder partitions the dictionary into cosets of dissimilar atoms with respect to shape and position in the image. The joint decoder then determines pairwise correspondences between atoms in the reference image and atoms in the cosets of the Wyner-Ziv image. It selects the most likely correspondence among pairs of atoms that satisfy epipolar geometry constraints. Atom pairing permits to estimate the local transformations between correlated images, which are later used to refine the side information provided by the reference image. Experiments demonstrate that the proposed method leads to reliable estimation of the geometric transformations between views. The distributed coding scheme offers similar rate-distortion performance as joint encoding at low bit rate and outperforms methods based on independent decoding of the different images

    On unifying sparsity and geometry for image-based 3D scene representation

    Get PDF
    Demand has emerged for next generation visual technologies that go beyond conventional 2D imaging. Such technologies should capture and communicate all perceptually relevant three-dimensional information about an environment to a distant observer, providing a satisfying, immersive experience. Camera networks offer a low cost solution to the acquisition of 3D visual information, by capturing multi-view images from different viewpoints. However, the camera's representation of the data is not ideal for common tasks such as data compression or 3D scene analysis, as it does not make the 3D scene geometry explicit. Image-based scene representations fundamentally require a multi-view image model that facilitates extraction of underlying geometrical relationships between the cameras and scene components. Developing new, efficient multi-view image models is thus one of the major challenges in image-based 3D scene representation methods. This dissertation focuses on defining and exploiting a new method for multi-view image representation, from which the 3D geometry information is easily extractable, and which is additionally highly compressible. The method is based on sparse image representation using an overcomplete dictionary of geometric features, where a single image is represented as a linear combination of few fundamental image structure features (edges for example). We construct the dictionary by applying a unitary operator to an analytic function, which introduces a composition of geometric transforms (translations, rotation and anisotropic scaling) to that function. The advantage of this approach is that the features across multiple views can be related with a single composition of transforms. We then establish a connection between image components and scene geometry by defining the transforms that satisfy the multi-view geometry constraint, and obtain a new geometric multi-view correlation model. We first address the construction of dictionaries for images acquired by omnidirectional cameras, which are particularly convenient for scene representation due to their wide field of view. Since most omnidirectional images can be uniquely mapped to spherical images, we form a dictionary by applying motions on the sphere, rotations, and anisotropic scaling to a function that lives on the sphere. We have used this dictionary and a sparse approximation algorithm, Matching Pursuit, for compression of omnidirectional images, and additionally for coding 3D objects represented as spherical signals. Both methods offer better rate-distortion performance than state of the art schemes at low bit rates. The novel multi-view representation method and the dictionary on the sphere are then exploited for the design of a distributed coding method for multi-view omnidirectional images. In a distributed scenario, cameras compress acquired images without communicating with each other. Using a reliable model of correlation between views, distributed coding can achieve higher compression ratios than independent compression of each image. However, the lack of a proper model has been an obstacle for distributed coding in camera networks for many years. We propose to use our geometric correlation model for distributed multi-view image coding with side information. The encoder employs a coset coding strategy, developed by dictionary partitioning based on atom shape similarity and multi-view geometry constraints. Our method results in significant rate savings compared to independent coding. An additional contribution of the proposed correlation model is that it gives information about the scene geometry, leading to a new camera pose estimation method using an extremely small amount of data from each camera. Finally, we develop a method for learning stereo visual dictionaries based on the new multi-view image model. Although dictionary learning for still images has received a lot of attention recently, dictionary learning for stereo images has been investigated only sparingly. Our method maximizes the likelihood that a set of natural stereo images is efficiently represented with selected stereo dictionaries, where the multi-view geometry constraint is included in the probabilistic modeling. Experimental results demonstrate that including the geometric constraints in learning leads to stereo dictionaries that give both better distributed stereo matching and approximation properties than randomly selected dictionaries. We show that learning dictionaries for optimal scene representation based on the novel correlation model improves the camera pose estimation and that it can be beneficial for distributed coding

    Geometry-Based Distributed Scene Representation With Omnidirectional Vision Sensors

    Full text link

    Distributed Representation of Geometrically Correlated Images with Compressed Linear Measurements

    Get PDF
    This paper addresses the problem of distributed coding of images whose correlation is driven by the motion of objects or positioning of the vision sensors. It concentrates on the problem where images are encoded with compressed linear measurements. We propose a geometry-based correlation model in order to describe the common information in pairs of images. We assume that the constitutive components of natural images can be captured by visual features that undergo local transformations (e.g., translation) in different images. We first identify prominent visual features by computing a sparse approximation of a reference image with a dictionary of geometric basis functions. We then pose a regularized optimization problem to estimate the corresponding features in correlated images given by quantized linear measurements. The estimated features have to comply with the compressed information and to represent consistent transformation between images. The correlation model is given by the relative geometric transformations between corresponding features. We then propose an efficient joint decoding algorithm that estimates the compressed images such that they stay consistent with both the quantized measurements and the correlation model. Experimental results show that the proposed algorithm effectively estimates the correlation between images in multi-view datasets. In addition, the proposed algorithm provides effective decoding performance that compares advantageously to independent coding solutions as well as state-of-the-art distributed coding schemes based on disparity learning

    Transformées basées graphes pour la compression de nouvelles modalités d’image

    Get PDF
    Due to the large availability of new camera types capturing extra geometrical information, as well as the emergence of new image modalities such as light fields and omni-directional images, a huge amount of high dimensional data has to be stored and delivered. The ever growing streaming and storage requirements of these new image modalities require novel image coding tools that exploit the complex structure of those data. This thesis aims at exploring novel graph based approaches for adapting traditional image transform coding techniques to the emerging data types where the sampled information are lying on irregular structures. In a first contribution, novel local graph based transforms are designed for light field compact representations. By leveraging a careful design of local transform supports and a local basis functions optimization procedure, significant improvements in terms of energy compaction can be obtained. Nevertheless, the locality of the supports did not permit to exploit long term dependencies of the signal. This led to a second contribution where different sampling strategies are investigated. Coupled with novel prediction methods, they led to very prominent results for quasi-lossless compression of light fields. The third part of the thesis focuses on the definition of rate-distortion optimized sub-graphs for the coding of omni-directional content. If we move further and give more degree of freedom to the graphs we wish to use, we can learn or define a model (set of weights on the edges) that might not be entirely reliable for transform design. The last part of the thesis is dedicated to theoretically analyze the effect of the uncertainty on the efficiency of the graph transforms.En raison de la grande disponibilité de nouveaux types de caméras capturant des informations géométriques supplémentaires, ainsi que de l'émergence de nouvelles modalités d'image telles que les champs de lumière et les images omnidirectionnelles, il est nécessaire de stocker et de diffuser une quantité énorme de hautes dimensions. Les exigences croissantes en matière de streaming et de stockage de ces nouvelles modalités d’image nécessitent de nouveaux outils de codage d’images exploitant la structure complexe de ces données. Cette thèse a pour but d'explorer de nouvelles approches basées sur les graphes pour adapter les techniques de codage de transformées d'image aux types de données émergents où les informations échantillonnées reposent sur des structures irrégulières. Dans une première contribution, de nouvelles transformées basées sur des graphes locaux sont conçues pour des représentations compactes des champs de lumière. En tirant parti d’une conception minutieuse des supports de transformées locaux et d’une procédure d’optimisation locale des fonctions de base , il est possible d’améliorer considérablement le compaction d'énergie. Néanmoins, la localisation des supports ne permettait pas d'exploiter les dépendances à long terme du signal. Cela a conduit à une deuxième contribution où différentes stratégies d'échantillonnage sont étudiées. Couplés à de nouvelles méthodes de prédiction, ils ont conduit à des résultats très importants en ce qui concerne la compression quasi sans perte de champs de lumière statiques. La troisième partie de la thèse porte sur la définition de sous-graphes optimisés en distorsion de débit pour le codage de contenu omnidirectionnel. Si nous allons plus loin et donnons plus de liberté aux graphes que nous souhaitons utiliser, nous pouvons apprendre ou définir un modèle (ensemble de poids sur les arêtes) qui pourrait ne pas être entièrement fiable pour la conception de transformées. La dernière partie de la thèse est consacrée à l'analyse théorique de l'effet de l'incertitude sur l'efficacité des transformées basées graphes

    Dictionary learning in stereo imaging

    Get PDF
    This paper presents a new method for learning overcomplete dictionaries adapted to efficient joint representation of stereo images. We first formulate a sparse stereo image model where the multi-view correlation is described by local geometric transforms of dictionary atoms in two stereo views. A maximum-likelihood method for learning stereo dictionaries is then proposed, which includes a multi-view geometry constraint in the probabilistic modeling in order to obtain dictionaries optimized for the joint representation of stereo images. The dictionaries are learned by optimizing the maximum-likelihood objective function using the expectation- maximization algorithm. We illustrate the learning algorithm in the case of omnidirectional images, where we learn scales of atoms in a parametric dictionary. The resulting dictionaries provide both better performance in the joint representation of stereo omnidirectional images and improved multi- view feature matching. We finally discuss and demonstrate the benefits of dictionary learning for distributed scene representation and camera pose estimation

    Dictionary learning in stereo imaging

    Get PDF
    This paper presents a new method for learning overcomplete dictionaries adapted to efficient joint representation of stereo images. We first formulate a sparse stereo image model where the multi-view correlation is described by local geometric transforms of dictionary atoms in two stereo views. A maximum-likelihood method for learning stereo dictionaries is then proposed, which includes a multi-view geometry constraint in the probabilistic modeling in order to obtain dictionaries optimized for the joint representation of stereo images. The dictionaries are learned by optimizing the maximum-likelihood objective function using the expectation- maximization algorithm. We illustrate the learning algorithm in the case of omnidirectional images, where we learn scales of atoms in a parametric dictionary. The resulting dictionaries provide both better performance in the joint representation of stereo omnidirectional images and improved multi- view feature matching. We finally discuss and demonstrate the benefits of dictionary learning for distributed scene representation and camera pose estimation

    Structureless Camera Motion Estimation of Unordered Omnidirectional Images

    Get PDF
    This work aims at providing a novel camera motion estimation pipeline from large collections of unordered omnidirectional images. In oder to keep the pipeline as general and flexible as possible, cameras are modelled as unit spheres, allowing to incorporate any central camera type. For each camera an unprojection lookup is generated from intrinsics, which is called P2S-map (Pixel-to-Sphere-map), mapping pixels to their corresponding positions on the unit sphere. Consequently the camera geometry becomes independent of the underlying projection model. The pipeline also generates P2S-maps from world map projections with less distortion effects as they are known from cartography. Using P2S-maps from camera calibration and world map projection allows to convert omnidirectional camera images to an appropriate world map projection in oder to apply standard feature extraction and matching algorithms for data association. The proposed estimation pipeline combines the flexibility of SfM (Structure from Motion) - which handles unordered image collections - with the efficiency of PGO (Pose Graph Optimization), which is used as back-end in graph-based Visual SLAM (Simultaneous Localization and Mapping) approaches to optimize camera poses from large image sequences. SfM uses BA (Bundle Adjustment) to jointly optimize camera poses (motion) and 3d feature locations (structure), which becomes computationally expensive for large-scale scenarios. On the contrary PGO solves for camera poses (motion) from measured transformations between cameras, maintaining optimization managable. The proposed estimation algorithm combines both worlds. It obtains up-to-scale transformations between image pairs using two-view constraints, which are jointly scaled using trifocal constraints. A pose graph is generated from scaled two-view transformations and solved by PGO to obtain camera motion efficiently even for large image collections. Obtained results can be used as input data to provide initial pose estimates for further 3d reconstruction purposes e.g. to build a sparse structure from feature correspondences in an SfM or SLAM framework with further refinement via BA. The pipeline also incorporates fixed extrinsic constraints from multi-camera setups as well as depth information provided by RGBD sensors. The entire camera motion estimation pipeline does not need to generate a sparse 3d structure of the captured environment and thus is called SCME (Structureless Camera Motion Estimation).:1 Introduction 1.1 Motivation 1.1.1 Increasing Interest of Image-Based 3D Reconstruction 1.1.2 Underground Environments as Challenging Scenario 1.1.3 Improved Mobile Camera Systems for Full Omnidirectional Imaging 1.2 Issues 1.2.1 Directional versus Omnidirectional Image Acquisition 1.2.2 Structure from Motion versus Visual Simultaneous Localization and Mapping 1.3 Contribution 1.4 Structure of this Work 2 Related Work 2.1 Visual Simultaneous Localization and Mapping 2.1.1 Visual Odometry 2.1.2 Pose Graph Optimization 2.2 Structure from Motion 2.2.1 Bundle Adjustment 2.2.2 Structureless Bundle Adjustment 2.3 Corresponding Issues 2.4 Proposed Reconstruction Pipeline 3 Cameras and Pixel-to-Sphere Mappings with P2S-Maps 3.1 Types 3.2 Models 3.2.1 Unified Camera Model 3.2.2 Polynomal Camera Model 3.2.3 Spherical Camera Model 3.3 P2S-Maps - Mapping onto Unit Sphere via Lookup Table 3.3.1 Lookup Table as Color Image 3.3.2 Lookup Interpolation 3.3.3 Depth Data Conversion 4 Calibration 4.1 Overview of Proposed Calibration Pipeline 4.2 Target Detection 4.3 Intrinsic Calibration 4.3.1 Selected Examples 4.4 Extrinsic Calibration 4.4.1 3D-2D Pose Estimation 4.4.2 2D-2D Pose Estimation 4.4.3 Pose Optimization 4.4.4 Uncertainty Estimation 4.4.5 PoseGraph Representation 4.4.6 Bundle Adjustment 4.4.7 Selected Examples 5 Full Omnidirectional Image Projections 5.1 Panoramic Image Stitching 5.2 World Map Projections 5.3 World Map Projection Generator for P2S-Maps 5.4 Conversion between Projections based on P2S-Maps 5.4.1 Proposed Workflow 5.4.2 Data Storage Format 5.4.3 Real World Example 6 Relations between Two Camera Spheres 6.1 Forward and Backward Projection 6.2 Triangulation 6.2.1 Linear Least Squares Method 6.2.2 Alternative Midpoint Method 6.3 Epipolar Geometry 6.4 Transformation Recovery from Essential Matrix 6.4.1 Cheirality 6.4.2 Standard Procedure 6.4.3 Simplified Procedure 6.4.4 Improved Procedure 6.5 Two-View Estimation 6.5.1 Evaluation Strategy 6.5.2 Error Metric 6.5.3 Evaluation of Estimation Algorithms 6.5.4 Concluding Remarks 6.6 Two-View Optimization 6.6.1 Epipolar-Based Error Distances 6.6.2 Projection-Based Error Distances 6.6.3 Comparison between Error Distances 6.7 Two-View Translation Scaling 6.7.1 Linear Least Squares Estimation 6.7.2 Non-Linear Least Squares Optimization 6.7.3 Comparison between Initial and Optimized Scaling Factor 6.8 Homography to Identify Degeneracies 6.8.1 Homography for Spherical Cameras 6.8.2 Homography Estimation 6.8.3 Homography Optimization 6.8.4 Homography and Pure Rotation 6.8.5 Homography in Epipolar Geometry 7 Relations between Three Camera Spheres 7.1 Three View Geometry 7.2 Crossing Epipolar Planes Geometry 7.3 Trifocal Geometry 7.4 Relation between Trifocal, Three-View and Crossing Epipolar Planes 7.5 Translation Ratio between Up-To-Scale Two-View Transformations 7.5.1 Structureless Determination Approaches 7.5.2 Structure-Based Determination Approaches 7.5.3 Comparison between Proposed Approaches 8 Pose Graphs 8.1 Optimization Principle 8.2 Solvers 8.2.1 Additional Graph Solvers 8.2.2 False Loop Closure Detection 8.3 Pose Graph Generation 8.3.1 Generation of Synthetic Pose Graph Data 8.3.2 Optimization of Synthetic Pose Graph Data 9 Structureless Camera Motion Estimation 9.1 SCME Pipeline 9.2 Determination of Two-View Translation Scale Factors 9.3 Integration of Depth Data 9.4 Integration of Extrinsic Camera Constraints 10 Camera Motion Estimation Results 10.1 Directional Camera Images 10.2 Omnidirectional Camera Images 11 Conclusion 11.1 Summary 11.2 Outlook and Future Work Appendices A.1 Additional Extrinsic Calibration Results A.2 Linear Least Squares Scaling A.3 Proof Rank Deficiency A.4 Alternative Derivation Midpoint Method A.5 Simplification of Depth Calculation A.6 Relation between Epipolar and Circumferential Constraint A.7 Covariance Estimation A.8 Uncertainty Estimation from Epipolar Geometry A.9 Two-View Scaling Factor Estimation: Uncertainty Estimation A.10 Two-View Scaling Factor Optimization: Uncertainty Estimation A.11 Depth from Adjoining Two-View Geometries A.12 Alternative Three-View Derivation A.12.1 Second Derivation Approach A.12.2 Third Derivation Approach A.13 Relation between Trifocal Geometry and Alternative Midpoint Method A.14 Additional Pose Graph Generation Examples A.15 Pose Graph Solver Settings A.16 Additional Pose Graph Optimization Examples Bibliograph

    Distributed Compressed Representation of Correlated Image Sets

    Get PDF
    Vision sensor networks and video cameras find widespread usage in several applications that rely on effective representation of scenes or analysis of 3D information. These systems usually acquire multiple images of the same 3D scene from different viewpoints or at different time instants. Therefore, these images are generally correlated through displacement of scene objects. Efficient compression techniques have to exploit this correlation in order to efficiently communicate the 3D scene information. Instead of joint encoding that requires communication between the cameras, in this thesis we concentrate on distributed representation, where the captured images are encoded independently, but decoded jointly to exploit the correlation between images. One of the most important and challenging tasks relies in estimation of the underlying correlation from the compressed correlated images for effective reconstruction or analysis in the joint decoder. This thesis focuses on developing efficient correlation estimation algorithms and joint representation of multiple correlated images captured by various sensing methodologies, e.g., planar, omnidirectional and compressive sensing (CS) sensors. The geometry of the 2D visual representation and the acquisition complexity vary for each sensor type. Therefore, we need to carefully consider the specific geometric nature of the captured images while developing distributed representation algorithms. In this thesis we propose robust algorithms in different scene analysis and reconstruction scenarios. We first concentrate on the distributed representation of omnidirectional images captured by catadioptric sensors. The omnidirectional images are captured from different viewpoints and encoded independently with a balanced rate distribution among the different cameras. They are mapped on the sphere which captures the plenoptic function in its radial form without Euclidean discrepancies. We propose a transform-based distributed coding algorithm, where the spherical images initially undergo a multi-resolution decomposition. The visual information is then split into two correlated partitions. The encoder transmits one partition after entropy coding, as well as the syndrome bits resulting from the Slepian-Wolf encoding of the other partition. The joint decoder estimates a disparity image to take benefit of the correlation between views and uses the syndrome bits to decode the missing information. Such a strategy proves to be beneficial with respect to the independent processing of images and shows only a small performance loss compared to the joint encoding of different views. The encoding complexity in the previous approach is non-negligible due to the visual information processing based on Slepian-Wolf coding and its associated rate parameter estimation. We therefore discard the Slepian-Wolf encoding and propose a distributed coding solution, where the correlated images are encoded independently using transform-based coding solutions (e.g., SPIHT). The central decoder now builds a correlation model from the compressed images, which is used to jointly decode a pair of images. Experimental results demonstrate that the proposed distributed coding solution improves the rate-distortion performance of the separate coding results for both planar and omnidirectional images. However, this improvement is significant only at medium to high bit rates. We therefore propose a rate allocation scheme that identifies and transmits the necessary visual information from each image to improve the correlation estimation accuracy at low bit rate. Experimental results show that for a given bit budget the proposed encoding scheme permits to compute an accurate correlation estimation comparing to the one obtained with SPIHT, JPEG 2000 or JPEG coding schemes. We show however that the improvement in the correlation estimation comes at the price of penalizing the image reconstruction quality; therefore there exists an interesting trade-off between the accurate correlation estimation and image reconstruction as encoding optimization objectives are different in both cases. Next, we further simplify the encoding complexity by replacing the classical imaging sensors with the simple CS sensors, that directly acquire the compressed images in the form of quantized linear measurements. We now concentrate on the particular problem, where one image is selected as the reference and it is used as a side information for the correlation estimation. We propose a geometry-based model to describe the correlation between the visual information in a pair of images. The joint decoder first captures the most prominent visual features in the reconstructed reference image using geometric functions. Since the images are correlated, these features are likely to be present in the other images too, possibly with geometric transformations. Hence, we propose to estimate the correlation model with a regularized optimization problem that locates these features in the compressed images. The regularization terms enforce smoothness of the transformation field, and consistency between the estimated images and the quantized measurements. Experimental results show that the proposed scheme is able to efficiently estimate the correlation between images for several multi-view and video datasets. The proposed scheme is finally shown to outperform DSC schemes based on unsupervised disparity (or motion) learning, as well as independent coding solutions based on JPEG 2000. We then extend the previous scenario to a symmetric decoding problem, where we are interested to estimate the correlation model directly from the quantized linear measurements without explicitly reconstructing the reference images. We first show that the motion field that represents the main source of correlation between images can be described as a linear operator. We further derive a linear relationship between the correlated measurements in the compressed domain. We then derive a regularized cost function to estimate the correlation model directly in the compressed domain using graph-based optimization algorithms. Experimental results show that the proposed scheme estimates an accurate correlation model among images in both multi-view and video imaging scenarios. We then propose a robust data fidelity term that improves the quality of the correlation estimation when the measurements are quantized. Finally, we show by experiments that the proposed compressed correlation estimation scheme is able to compete the solution of a scheme that estimates a correlation model from the reconstructed images without the complexity of image reconstruction. Finally, we study the benefit of using the correlation information while jointly reconstructing the images from the compressed linear measurements. We consider both the asymmetric and symmetric scenarios described previously. We propose joint reconstruction methodologies based on a constrained optimization problem which is solved using effective proximal splitting methods. The constraints included in our framework enforce the reconstructed images to satisfy both the correlation and the quantized measurements consistency objectives. Experimental results demonstrate that the proposed joint reconstruction scheme improves the quality of the decoded images, when compared to a scheme where the images are handled independently. In this thesis we build efficient distributed scene representation algorithms for the multiple correlated images captured in planar, omnidirectional and CS cameras. The coding rate in our symmetric distributed coding solution stays balanced between the encoders and stays close to the joint encoding solutions. Our novel algorithms lead to effective correlation estimation in different sensing and coding scenarios. In addition, we provide innovative solutions for robust correlation estimation from highly compressed images in simple sensing frameworks. Our CS-based joint reconstruction frameworks effectively exploit the inter-view correlation, that permits to achieve high compression gains compared to state-of-the-art independent and distributed coding solutions
    • …
    corecore