3,723 research outputs found

    Learn to synthesize and synthesize to learn

    Get PDF
    Attribute guided face image synthesis aims to manipulate attributes on a face image. Most existing methods for image-to-image translation can either perform a fixed translation between any two image domains using a single attribute or require training data with the attributes of interest for each subject. Therefore, these methods could only train one specific model for each pair of image domains, which limits their ability in dealing with more than two domains. Another disadvantage of these methods is that they often suffer from the common problem of mode collapse that degrades the quality of the generated images. To overcome these shortcomings, we propose attribute guided face image generation method using a single model, which is capable to synthesize multiple photo-realistic face images conditioned on the attributes of interest. In addition, we adopt the proposed model to increase the realism of the simulated face images while preserving the face characteristics. Compared to existing models, synthetic face images generated by our method present a good photorealistic quality on several face datasets. Finally, we demonstrate that generated facial images can be used for synthetic data augmentation, and improve the performance of the classifier used for facial expression recognition.Comment: Accepted to Computer Vision and Image Understanding (CVIU

    Geometry-Aware Face Completion and Editing

    Full text link
    Face completion is a challenging generation task because it requires generating visually pleasing new pixels that are semantically consistent with the unmasked face region. This paper proposes a geometry-aware Face Completion and Editing NETwork (FCENet) by systematically studying facial geometry from the unmasked region. Firstly, a facial geometry estimator is learned to estimate facial landmark heatmaps and parsing maps from the unmasked face image. Then, an encoder-decoder structure generator serves to complete a face image and disentangle its mask areas conditioned on both the masked face image and the estimated facial geometry images. Besides, since low-rank property exists in manually labeled masks, a low-rank regularization term is imposed on the disentangled masks, enforcing our completion network to manage occlusion area with various shape and size. Furthermore, our network can generate diverse results from the same masked input by modifying estimated facial geometry, which provides a flexible mean to edit the completed face appearance. Extensive experimental results qualitatively and quantitatively demonstrate that our network is able to generate visually pleasing face completion results and edit face attributes as well

    Prominent Attribute Modification using Attribute Dependent Generative Adversarial Network

    Full text link
    Modifying the facial images with desired attributes is important, though challenging tasks in computer vision, where it aims to modify single or multiple attributes of the face image. Some of the existing methods are either based on attribute independent approaches where the modification is done in the latent representation or attribute dependent approaches. The attribute independent methods are limited in performance as they require the desired paired data for changing the desired attributes. Secondly, the attribute independent constraint may result in the loss of information and, hence, fail in generating the required attributes in the face image. In contrast, the attribute dependent approaches are effective as these approaches are capable of modifying the required features along with preserving the information in the given image. However, attribute dependent approaches are sensitive and require a careful model design in generating high-quality results. To address this problem, we propose an attribute dependent face modification approach. The proposed approach is based on two generators and two discriminators that utilize the binary as well as the real representation of the attributes and, in return, generate high-quality attribute modification results. Experiments on the CelebA dataset show that our method effectively performs the multiple attribute editing with preserving other facial details intactly

    Using Photorealistic Face Synthesis and Domain Adaptation to Improve Facial Expression Analysis

    Full text link
    Cross-domain synthesizing realistic faces to learn deep models has attracted increasing attention for facial expression analysis as it helps to improve the performance of expression recognition accuracy despite having small number of real training images. However, learning from synthetic face images can be problematic due to the distribution discrepancy between low-quality synthetic images and real face images and may not achieve the desired performance when the learned model applies to real world scenarios. To this end, we propose a new attribute guided face image synthesis to perform a translation between multiple image domains using a single model. In addition, we adopt the proposed model to learn from synthetic faces by matching the feature distributions between different domains while preserving each domain's characteristics. We evaluate the effectiveness of the proposed approach on several face datasets on generating realistic face images. We demonstrate that the expression recognition performance can be enhanced by benefiting from our face synthesis model. Moreover, we also conduct experiments on a near-infrared dataset containing facial expression videos of drivers to assess the performance using in-the-wild data for driver emotion recognition.Comment: 8 pages, 8 figures, 5 tables, accepted by FG 2019. arXiv admin note: substantial text overlap with arXiv:1905.0028

    Hierarchy Composition GAN for High-fidelity Image Synthesis

    Full text link
    Despite the rapid progress of generative adversarial networks (GANs) in image synthesis in recent years, the existing image synthesis approaches work in either geometry domain or appearance domain alone which often introduces various synthesis artifacts. This paper presents an innovative Hierarchical Composition GAN (HIC-GAN) that incorporates image synthesis in geometry and appearance domains into an end-to-end trainable network and achieves superior synthesis realism in both domains simultaneously. We design an innovative hierarchical composition mechanism that is capable of learning realistic composition geometry and handling occlusions while multiple foreground objects are involved in image composition. In addition, we introduce a novel attention mask mechanism that guides to adapt the appearance of foreground objects which also helps to provide better training reference for learning in geometry domain. Extensive experiments on scene text image synthesis, portrait editing and indoor rendering tasks show that the proposed HIC-GAN achieves superior synthesis performance qualitatively and quantitatively.Comment: 11 pages, 8 figure

    Training and Tuning Generative Neural Radiance Fields for Attribute-Conditional 3D-Aware Face Generation

    Full text link
    Generative Neural Radiance Fields (GNeRF) based 3D-aware GANs have demonstrated remarkable capabilities in generating high-quality images while maintaining strong 3D consistency. Notably, significant advancements have been made in the domain of face generation. However, most existing models prioritize view consistency over disentanglement, resulting in limited semantic/attribute control during generation. To address this limitation, we propose a conditional GNeRF model incorporating specific attribute labels as input to enhance the controllability and disentanglement abilities of 3D-aware generative models. Our approach builds upon a pre-trained 3D-aware face model, and we introduce a Training as Init and Optimizing for Tuning (TRIOT) method to train a conditional normalized flow module to enable the facial attribute editing, then optimize the latent vector to improve attribute-editing precision further. Our extensive experiments demonstrate that our model produces high-quality edits with superior view consistency while preserving non-target regions. Code is available at https://github.com/zhangqianhui/TT-GNeRF.Comment: 13 page
    • …
    corecore